Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
4.
Adv Mater ; 36(8): e2306996, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031346

RESUMO

Numerous bio-organisms employ template-assisted crystallization of molecular solids to yield crystal morphologies with unique optical properties that are difficult to reproduce synthetically. Here, a facile procedure is presented to deposit bio-inspired birefringent crystals of xanthine derivatives on a template of single-crystal quartz. Crystalline sheets that are several millimeters in length, several hundred micrometers in width, and 300-600 nm thick, are obtained. The crystal sheets are characterized with a well-defined orientation both in and out of the substrate plane, giving rise to high optical anisotropy in the plane parallel to the quartz surface, with a refractive index difference Δn ≈ 0.25 and a refractive index along the slow axis of n ≈ 1.7. It is further shown that patterning of the crystalline stripes with a tailored periodic grating leads to a thin organic polarization-dependent diffractive meta-surface, opening the door to the fabrication of various optical devices from a platform of small-molecule based organic dielectric crystals.

5.
J Am Chem Soc ; 144(12): 5304-5314, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293741

RESUMO

We revisit the important issues of polymorphism, structure, and nucleation of cholesterol·H2O using first-principles calculations based on dispersion-augmented density functional theory. For the lesser known monoclinic polymorph, we obtain a fully extended H-bonded network in a structure akin to that of hexagonal ice. We show that the energy of the monoclinic and triclinic polymorphs is similar, strongly suggesting that kinetic and environmental effects play a significant role in determining polymorph nucleation. Furthermore, we find evidence in support of various O-H···O bonding motifs in both polymorphs that may result in hydroxyl disorder. We have been able to explain, via computation, why a single cholesterol bilayer in hydrated membranes always crystallizes in the monoclinic polymorph. We rationalize what we believe is a single-crystal to single-crystal transformation of the monoclinic form on increased interlayer growth beyond that of a single cholesterol bilayer, interleaved by a water bilayer. We show that the ice-like structure is also relevant to the related cholestanol·2H2O and stigmasterol·H2O crystals. The structure of stigmasterol hydrate both as a trilayer film at the air-water interface and as a macroscopic crystal further assists us in understanding the polymorphic and thermal behavior of cholesterol·H2O. Finally, we posit a possible role for one of the sterol esters in the crystallization of cholesterol·H2O in pathological environments, based on a composite of a crystalline bilayer of cholesteryl palmitate bound epitaxially as a nucleating agent to the monoclinic cholesterol·H2O form.


Assuntos
Colesterol , Água , Colesterol/química , Cristalização , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA