Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105684, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272231

RESUMO

Eukaryotic elongation factor 1A1 (EEF1A1) is canonically involved in protein synthesis but also has noncanonical functions in diverse cellular processes. Previously, we identified EEF1A1 as a mediator of lipotoxicity and demonstrated that chemical inhibition of EEF1A1 activity reduced mouse liver lipid accumulation. These findings suggested a link between EEF1A1 and metabolism. Therefore, we investigated its role in regulating metabolic substrate preference. EEF1A1-deficient Chinese hamster ovary (2E2) cells displayed reduced media lactate accumulation. These effects were also observed with EEF1A1 knockdown in human hepatocyte-like HepG2 cells and in WT Chinese hamster ovary and HepG2 cells treated with selective EEF1A inhibitors, didemnin B, or plitidepsin. Extracellular flux analyses revealed decreased glycolytic ATP production and increased mitochondrial-to-glycolytic ATP production ratio in 2E2 cells, suggesting a more oxidative metabolic phenotype. Correspondingly, fatty acid oxidation was increased in 2E2 cells. Both 2E2 cells and HepG2 cells treated with didemnin B exhibited increased neutral lipid content, which may be required to support elevated oxidative metabolism. RNA-seq revealed a >90-fold downregulation of a rate-limiting glycolytic enzyme, hexokinase 2, which we confirmed through immunoblotting and enzyme activity assays. Pathway enrichment analysis identified downregulations in TNFA signaling via NFKB and MYC targets. Correspondingly, nuclear abundances of RELB and MYC were reduced in 2E2 cells. Thus, EEF1A1 deficiency may perturb glycolysis by limiting NFKB- and MYC-mediated gene expression, leading to decreased hexokinase expression and activity. This is the first evidence of a role for a translation elongation factor, EEF1A1, in regulating metabolic substrate utilization in mammalian cells.


Assuntos
Hexoquinase , Fator 1 de Elongação de Peptídeos , Animais , Cricetinae , Humanos , Trifosfato de Adenosina , Linhagem Celular , Cricetulus , Hexoquinase/genética , Hexoquinase/metabolismo , Lipídeos , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Glicólise , Oxirredução , Movimento Celular , Proliferação de Células , Metabolismo dos Lipídeos
2.
Commun Biol ; 6(1): 1152, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957414

RESUMO

Ovarian cancers exhibit high rates of recurrence and poor treatment response. Preclinical models that recapitulate human disease are critical to develop new therapeutic approaches. Syngeneic mouse models allow for the generation of tumours comprising the full repertoire of non-malignant cell types but have expanded in number, varying in the cell type of origin, method for transformation, and ultimately, the properties of the tumours they produce. Here we have performed a comparative analysis of high-grade serous ovarian cancer models based on transcriptomic profiling of 22 cell line models, and intrabursal and intraperitoneal tumours from 12. Among cell lines, we identify distinct signalling activity, such as elevated inflammatory signalling in STOSE and OVE16 models, and MAPK/ERK signalling in ID8 and OVE4 models; metabolic differences, such as reduced glycolysis-associated expression in several engineered ID8 subclones; and relevant functional properties, including differences in EMT activation, PD-L1 and MHC class I expression, and predicted chemosensitivity. Among tumour samples, we observe increased variability and stromal content among intrabursal tumours. Finally, we predict differences in the microenvironment of ID8 models engineered with clinically relevant mutations. We anticipate that this work will serve as a valuable resource, providing new insight to help select models for specific experimental objectives.


Assuntos
Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Neoplasias Ovarianas/patologia , Perfilação da Expressão Gênica , Transdução de Sinais , Microambiente Tumoral/genética
3.
J Ovarian Res ; 16(1): 218, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986175

RESUMO

High-grade serous carcinoma (HGSC) is the most common and aggressive subtype of epithelial ovarian cancer, characterized by gain-of-function TP53 mutations originating in the fallopian tube epithelium. Therapeutic intervention occurs at advanced metastatic disease, due to challenges in early-stage diagnosis, with common disease recurrence and therapy resistance despite initial therapy success. The mevalonate pathway is exploited by many cancers and is potently inhibited by statin drugs. Statins have shown anti-cancer activity in many, but not all cancers. Here, we investigated the role of p53 status in relation to mevalonate pathway signaling in murine oviductal epithelial (OVE) cells and identified OVE cell sensitivity to statin inhibition. We found that p53R175H mutant and Trp53 knockout OVE cells have increased mevalonate pathway signaling compared to p53 wild-type OVE cells. Through orthotopic implantation to replicate the fallopian tube origin of HGSC, p53R175H mutant cells upregulated the mevalonate pathway to drive progression to advanced-stage ovarian cancer, and simvastatin treatment abrogated this effect. Additionally, simvastatin was more efficacious at inhibiting cell metabolic activity in OVE cells than atorvastatin, rosuvastatin and pravastatin. In vitro, simvastatin demonstrated potent effects on cell proliferation, apoptosis, invasion and migration in OVE cells regardless of p53 status. In vivo, simvastatin induced ovarian cancer disease regression through decreased primary ovarian tumor weight and increased apoptosis. Simvastatin also significantly increased cytoplasmic localization of HMG-CoA reductase in ovarian tumors. Downstream of the mevalonate pathway, simvastatin had no effect on YAP or small GTPase activity. This study suggests that simvastatin can induce anti-tumor effects and could be an important inhibitor of ovarian cancer progression.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Ovarianas , Feminino , Camundongos , Animais , Humanos , Tubas Uterinas/metabolismo , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Sinvastatina/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Ácido Mevalônico/metabolismo , Ácido Mevalônico/uso terapêutico , Células Epiteliais/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/patologia
4.
Mol Cell Proteomics ; 22(11): 100660, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820923

RESUMO

Epithelial ovarian cancer (EOC) is a high-risk cancer presenting with heterogeneous tumors. The high incidence of EOC metastasis from primary tumors to nearby tissues and organs is a major driver of EOC lethality. We used cellular models of spheroid formation and readherence to investigate cellular signaling dynamics in each step toward EOC metastasis. In our system, adherent cells model primary tumors, spheroid formation represents the initiation of metastatic spread, and readherent spheroid cells represent secondary tumors. Proteomic and phosphoproteomic analyses show that spheroid cells are hypoxic and show markers for cell cycle arrest. Aurora kinase B abundance and downstream substrate phosphorylation are significantly reduced in spheroids and readherent cells, explaining their cell cycle arrest phenotype. The proteome of readherent cells is most similar to spheroids, yet greater changes in the phosphoproteome show that spheroid cells stimulate Rho-associated kinase 1 (ROCK1)-mediated signaling, which controls cytoskeletal organization. In spheroids, we found significant phosphorylation of ROCK1 substrates that were reduced in both adherent and readherent cells. Application of the ROCK1-specific inhibitor Y-27632 to spheroids increased the rate of readherence and altered spheroid density. The data suggest ROCK1 inhibition increases EOC metastatic potential. We identified novel pathways controlled by Aurora kinase B and ROCK1 as major drivers of metastatic behavior in EOC cells. Our data show that phosphoproteomic reprogramming precedes proteomic changes that characterize spheroid readherence in EOC metastasis.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas/metabolismo , Aurora Quinase B , Proteômica , Esferoides Celulares/metabolismo , Linhagem Celular Tumoral , Metástase Neoplásica , Quinases Associadas a rho
5.
Sci Rep ; 13(1): 11424, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452087

RESUMO

Ovarian high-grade serous carcinoma (HGSC) is a highly lethal malignancy for which early detection is a challenge and treatment of late-stage disease is ineffective. HGSC initiation involves exfoliation of fallopian tube epithelial (FTE) cells which form multicellular clusters called spheroids that colonize and invade the ovary. HGSC contains universal mutation of the tumour suppressor gene TP53. However, not all TP53 mutations are the same, as specific p53 missense mutants contain gain-of-function (GOF) properties that drive tumour formation. Additionally, the role of GOF p53 in spheroid-mediated spread is poorly understood. In this study, we developed and characterized an in vitro model of HGSC based on mutation of TP53 in mouse oviductal epithelial cells (OVE). We discovered increased bulk spheroid survival and increased anchorage-independent growth in OVE cells expressing the missense mutant p53R175H compared to OVE parental and Trp53ko cells. Transcriptomic analysis on spheroids identified decreased apoptosis signaling due to p53R175H. Further assessment of the apoptosis pathway demonstrated decreased expression of intrinsic and extrinsic apoptosis signaling molecules due to Trp53 deletion and p53R175H, but Caspase-3 activation was only decreased in spheroids with p53R175H. These results highlight this model as a useful tool for discovering early HGSC transformation mechanisms and uncover a potential anti-apoptosis GOF mechanism of p53R175H.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Camundongos , Feminino , Humanos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Ovarianas/patologia , Mutação com Ganho de Função , Cistadenocarcinoma Seroso/patologia
6.
J Ovarian Res ; 16(1): 70, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37038202

RESUMO

Epithelial ovarian cancer (EOC) research has become more complex as researchers try to fully understand the metastatic process. Especially as we delve into the concept of tumour dormancy, where cells transition between proliferative and dormant states to survive during disease progression. Thus, the in vitro models used to conduct this research need to reflect this vast biological complexity. The innovation behind the many three-dimensional (3D) spheroid models has been refined to easily generate reproducible spheroids so that we may understand the various molecular signaling changes of cells during metastasis and determine therapeutic efficacy of treatments. This ingenuity was then used to develop the 3D ex vivo patient-derived organoid model, as well as multiple co-culture model systems for EOC research. Although, researchers need to continue to push the boundaries of these current models for in vitro and even in vivo work in the future. In this review, we describe the 3D models already in use, where these models can be developed further and how we can use these models to gain the most knowledge on EOC pathogenesis and discover new targeted therapies.


Assuntos
Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Esferoides Celulares , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário
7.
Cell Div ; 17(1): 2, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35321751

RESUMO

In cancer, dormancy refers to a clinical state in which microscopic residual disease becomes non-proliferative and is largely refractory to chemotherapy. Dormancy was first described in breast cancer where disease can remain undetected for decades, ultimately leading to relapse and clinical presentation of the original malignancy. A long latency period can be explained by withdrawal from cell proliferation (cellular dormancy), or a balance between proliferation and cell death that retains low levels of residual disease (tumor mass dormancy). Research into cellular dormancy has revealed features that define this state. They include arrest of cell proliferation, altered cellular metabolism, and unique cell dependencies and interactions with the microenvironment. These characteristics can be shared by dormant cells derived from disparate primary disease sites, suggesting common features exist between them.High-grade serous ovarian cancer (HGSOC) disseminates to locations throughout the abdominal cavity by means of cellular aggregates called spheroids. These growth-arrested and therapy-resistant cells are a strong contributor to disease relapse. In this review, we discuss the similarities and differences between ovarian cancer cells in spheroids and dormant properties reported for other cancer disease sites. This reveals that elements of dormancy, such as cell cycle control mechanisms and changes to metabolism, may be similar across most forms of cellular dormancy. However, HGSOC-specific aspects of spheroid biology, including the extracellular matrix organization and microenvironment, are obligatorily disease site specific. Collectively, our critical review of current literature highlights places where HGSOC cell dormancy may offer a more tractable experimental approach to understand broad principles of cellular dormancy in cancer.

8.
Sci Rep ; 12(1): 3011, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194062

RESUMO

High-grade serous ovarian cancer (HGSOC) is an aggressive malignancy often diagnosed at an advanced stage. Although most HGSOC patients respond initially to debulking surgery combined with cytotoxic chemotherapy, many ultimately relapse with platinum-resistant disease. Thus, improving outcomes requires new ways of limiting metastasis and eradicating residual disease. We identified previously that Liver kinase B1 (LKB1) and its substrate NUAK1 are implicated in EOC spheroid cell viability and are required for efficient metastasis in orthotopic mouse models. Here, we sought to identify additional signalling pathways altered in EOC cells due to LKB1 or NUAK1 loss-of-function. Transcriptome analysis revealed that inflammatory signalling mediated by NF-κB transcription factors is hyperactive due to LKB1-NUAK1 loss in HGSOC cells and spheroids. Upregulated NF-κB signalling due to NUAK1 loss suppresses reactive oxygen species (ROS) production and sustains cell survival in spheroids. NF-κB signalling is also activated in HGSOC precursor fallopian tube secretory epithelial cell spheroids, and is further enhanced by NUAK1 loss. Finally, immunohistochemical analysis of OVCAR8 xenograft tumors lacking NUAK1 displayed increased RelB expression and nuclear staining. Our results support the idea that NUAK1 and NF-κB signalling pathways together regulate ROS and inflammatory signalling, supporting cell survival during each step of HGSOC pathogenesis. We propose that their combined inhibition may be efficacious as a novel therapeutic strategy for advanced HGSOC.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/genética , Quinases Proteína-Quinases Ativadas por AMP/fisiologia , Mutação com Perda de Função , NF-kappa B/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Esferoides Celulares , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Terapia de Alvo Molecular , Transplante de Neoplasias , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Espécies Reativas de Oxigênio/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/fisiologia , Transcriptoma/genética , Células Tumorais Cultivadas
9.
Clin Exp Metastasis ; 39(2): 291-301, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34822024

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy in the developed world. EOC metastasis is unique since malignant cells detach directly from the primary tumor site into the abdominal fluid and form multicellular aggregates, called spheroids, that possess enhanced survival mechanisms while in suspension. As such, altered cell adhesion properties are paramount to EOC metastasis with cell detachment from the primary tumor, dissemination as spheroids, and reattachment to peritoneal surfaces for secondary tumor formation. The ability for EOC cells to establish and maintain cell-cell contacts in spheroids is critical for cell survival in suspension. Integrins are a family of cell adhesion receptors that play a crucial role in cell-cell and cell-extracellular matrix interactions. These glycoprotein receptors regulate diverse functions in tumor cells and are implicated in multiple steps of cancer progression. Altered integrin expression is detected in numerous carcinomas, where they play a role in cell migration, invasion, and anchorage-independent survival. Like that observed for other carcinomas, epithelial-mesenchymal transition (EMT) occurs during metastasis and integrins can function in this process as well. Herein, we provide a review of the evidence for integrin-mediated cell adhesion mechanisms impacting steps of EOC metastasis. Taken together, targeting integrin function may represent a potential therapeutic strategy to inhibit progression of advanced EOC.


Assuntos
Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Adesão Celular , Linhagem Celular Tumoral , Humanos , Integrinas/uso terapêutico , Metástase Neoplásica , Neoplasias Ovarianas/patologia , Esferoides Celulares/metabolismo
10.
Cancer Immunol Immunother ; 71(5): 1259-1273, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34854949

RESUMO

The low mutational burden of epithelial ovarian cancer (EOC) is an impediment to immunotherapies that rely on conventional MHC-restricted, neoantigen-reactive T lymphocytes. Mucosa-associated invariant T (MAIT) cells are MR1-restricted T cells with remarkable immunomodulatory properties. We sought to characterize intratumoral and ascitic MAIT cells in EOC. Single-cell RNA sequencing of six primary human tumor specimens demonstrated that MAIT cells were present at low frequencies within several tumors. When detectable, these cells highly expressed CD69 and VSIR, but otherwise exhibited a transcriptomic signature inconsistent with overt cellular activation and/or exhaustion. Unlike mainstream CD8+ T cells, CD8+ MAIT cells harbored high transcript levels of TNF, PRF1, GZMM and GNLY, suggesting their arming and cytotoxic potentials. In a congenic, MAIT cell-sufficient mouse model of EOC, MAIT and invariant natural killer T cells amassed in the peritoneal cavity where they showed robust IL-17A and IFN-γ production capacities, respectively. However, they gradually lost these functions with tumor progression. In a cohort of 23 EOC patients, MAIT cells were readily detectable in all ascitic fluids examined. In a sub-cohort in which we interrogated ascitic MAIT cells for functional impairments, several exhaustion markers, most notably VISTA, were present on the surface. However, ascitic MAIT cells were capable of producing IFN-γ, TNF-α and granzyme B, but neither IL-17A nor IL-10, in response to an MR1 ligand, bacterial lysates containing MR1 ligands, or a combination of IL-12 and IL-18. In conclusion, ascitic MAIT cells in EOC possess inducible effector functions that may be modified in future immunotherapeutic strategies.


Assuntos
Células T Invariantes Associadas à Mucosa , Neoplasias Ovarianas , Animais , Ascite , Linfócitos T CD8-Positivos , Carcinoma Epitelial do Ovário , Sinais (Psicologia) , Citocinas , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Interleucina-17 , Ligantes , Camundongos , Antígenos de Histocompatibilidade Menor
11.
Cells ; 9(11)2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153119

RESUMO

Ovarian clear cell carcinoma (OCCC) is a rare subtype of gynecological cancer for which well-characterized and authenticated model systems are scarce. We provide an extensive characterization of '105C', a cell line generated from an adenocarcinoma of the clear cell histotype using targeted next-generation sequencing, cytogenetic microarrays, along with analyses of AKT/mTOR signaling. We report that that the 105C cell line is a bona fide OCCC cell line, carrying PIK3CA, PTEN, and ARID1A gene mutations, consistent with OCCC, yet maintain a stable genome as reflected by low copy number variation. Unlike KOC-7c, TOV-21G, and RMG-V OCCC lines also mutated for the above genes, the 105C cells do not carry mutations in mismatch repair genes. Importantly, we show that 105C cells exhibit greater resistance to mTOR inhibition and carboplatin treatment compared to 9 other OCCC cell lines in 3D spheroid cultures. This resistance may be attributed to 105C cells remaining dormant in suspension culture which surprisingly, contrasts with several other OCCC lines which continue to proliferate in long-term suspension culture. 105C cells survive xenotransplantation but do not proliferate and metastasize. Collectively, we show that the 105C OCCC cell line exhibits unique properties useful for the pre-clinical investigation of OCCC pathobiology.


Assuntos
Antineoplásicos/uso terapêutico , Instabilidade Genômica , Mutação/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Esferoides Celulares/patologia , Animais , Antineoplásicos/farmacologia , Adesão Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromossomos Humanos/genética , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano , Instabilidade Genômica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Taxa de Mutação , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Am J Cancer Res ; 10(5): 1384-1399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509386

RESUMO

Metastasis in high-grade serous ovarian cancer (HGSOC) occurs through an unconventional route that involves exfoliation of cancer cells from primary tumors and peritoneal dissemination via multicellular clusters or spheroids. Previously, we demonstrated autophagy induction in HGSOC spheroids grown in vitro and in spheroids collected from ovarian cancer patient ascites; thus, we speculate that autophagy may contribute to spheroid cell survival and overall disease progression. Hence, in this study we sought to evaluate whether ULK1 (unc-51-like kinase-1), a serine-threonine kinase critical for stress-induced autophagy, is important for autophagy regulation in HGSOC spheroids. We demonstrate that HGSOC spheroids have increased ULK1 protein expression that parallels autophagy activation. ULK1 knockdown increased p62 accumulation and decreased LC3-II/I ratio in HGSOC spheroids. In addition, knocking down ATG13, a protein that regulates ULK1 activity via complex formation, phenocopied our ULK1 knockdown results. HGSOC spheroids were blocked in autophagic flux due to ULK1 and ATG13 knockdown as determined by an mCherry-eGFP-LC3B fluorescence reporter. These observations were recapitulated when HGSOC spheroids were treated with an ULK1 kinase inhibitor, MRT68921. Autophagy regulation in normal human fallopian tube epithelial FT190 cells, however, may bypass ULK1, since MRT68921 reduced viability in HGSOC spheroids but not in FT190 cells. Interestingly, ULK1 mRNA expression is negatively correlated with patient survival among stage III and stage IV serous ovarian cancer patients. As we observed using established HGSOC cell lines, cultured spheroids using our new, patient-derived HGSOC cells were also sensitive to ULK1 inhibition and demonstrated reduced cell viability to MRT68921 treatment. These results demonstrate the importance of ULK1 for autophagy induction in HGSOC spheroids and therefore justifies further evaluation of MRT68921, and other novel ULK1 inhibitors, as potential therapeutics against metastatic HGSOC.

13.
Cancers (Basel) ; 12(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429240

RESUMO

Epithelial ovarian cancer (EOC) has a unique mode of metastasis, where cells shed from the primary tumour, form aggregates called spheroids to evade anoikis, spread through the peritoneal cavity, and adhere to secondary sites. We previously showed that the master kinase Liver kinase B1 (LKB1) is required for EOC spheroid viability and metastasis. We have identified novel (nua) kinase 1 (NUAK1) as a top candidate LKB1 substrate in EOC cells and spheroids using a multiplex inhibitor beads-mass spectrometry approach. We confirmed that LKB1 maintains NUAK1 phosphorylation and promotes its stabilization. We next investigated NUAK1 function in EOC cells. Ectopic NUAK1-overexpressing EOC cell lines had increased adhesion, whereas the reverse was seen in OVCAR8-NUAK1KO cells. In fact, cells with NUAK1 loss generate spheroids with reduced integrity, leading to increased cell death after long-term culture. Following transcriptome analysis, we identified reduced enrichment for cell interaction gene expression pathways in OVCAR8-NUAK1KO spheroids. In fact, the FN1 gene, encoding fibronectin, exhibited a 745-fold decreased expression in NUAK1KO spheroids. Fibronectin expression was induced during native spheroid formation, yet this was completely lost in NUAK1KO spheroids. Co-incubation with soluble fibronectin restored the compact spheroid phenotype to OVCAR8-NUAK1KO cells. In a xenograft model of intraperitoneal metastasis, NUAK1 loss extended survival and reduced fibronectin expression in tumours. Thus, we have identified a new mechanism controlling EOC metastasis, through which LKB1-NUAK1 activity promotes spheroid formation and secondary tumours via fibronectin production.

14.
J Obstet Gynaecol Res ; 46(8): 1282-1291, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464696

RESUMO

AIM: Obesity has been associated with changes in autophagy and its increasing prevalence among pregnant women is implicated in higher rates of placental-mediated complications of pregnancy such as pre-eclampsia and intrauterine growth restriction. Autophagy is involved in normal placentation, thus changes in autophagy may lead to impaired placental function and development. The aim of this study was to investigate the connection between obesity and autophagy in the placenta in otherwise uncomplicated pregnancies. METHODS: Immunohistochemistry and western blot analysis were done on placental and omental samples from obese (body mass index [BMI] ≥30 kg/m2 ) and normal weight (BMI <25 kg/m2 ) pregnant women with singleton pregnancies undergoing planned Caesarean delivery without labor at term. Samples were analyzed for autophagic markers LC3B and p62 in the peripheral, middle and central regions of the placenta and in omental adipocytes, milky spots and vasculature. RESULTS: As pre-pregnancy BMI increased, there was an increase in both placental and fetal weight as well as decreased levels of LC3B in the central region of the placenta (P = 0.0046). Within the obese patient group, LC3B levels were significantly decreased in the placentas of male fetuses compared to females (P < 0.0001). Adipocytes, compared to milky spots and vasculature, had lower levels of p62 (P = 0.0127) and LC3B (P = 0.003) in obese omenta and lower levels of LC3B in control omenta (P = 0.0071). CONCLUSION: Obesity leads to reduced placental autophagy in uncomplicated pregnancies; thus, changes in autophagy may be involved in the underlying mechanisms of obesity-related placental diseases of pregnancy.


Assuntos
Obesidade Materna , Autofagia , Índice de Massa Corporal , Feminino , Humanos , Masculino , Placenta , Placentação , Gravidez
15.
J Ovarian Res ; 13(1): 58, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393385

RESUMO

BACKGROUND: A hallmark of epithelial ovarian cancer (EOC) metastasis is the process of spheroid formation, whereby tumour cells aggregate into 3D structures while in suspension in the peritoneal cavity. EOC spheroids are subjected to bioenergetic stress, thereby activating AMP-activated protein kinase (AMPK) signaling to enter a metabolically quiescent state, which can facilitate cell survival under nutrient-limiting conditions. Independently, we have also demonstrated that EOC spheroids induce autophagy, a process that degrades and recycles intracellular components to restore energy and metabolites. Herein, we sought to examine whether AMPK controls autophagy induction as a cell survival mechanism in EOC spheroids. RESULTS: We observed a co-ordinate increase in phosphorylated AMPK and the autophagy marker LC3-II during EOC spheroid formation. Reduced AMPK expression by siRNA-mediated knockdown of PRKAA1 and PRKAA2 blocked autophagic flux in EOC spheroids as visualized by fluorescence microscopy using the mCherry-eGFP-LC3B reporter. A complementary approach using pharmacologic agents Compound C and CAMKKß inhibitor STO-609 to inhibit AMPK activity both yielded a potent blockade of autophagic flux as well. However, direct activation of AMPK in EOC cells using oligomycin and metformin was insufficient to induce autophagy. STO-609 treatment of EOC spheroids resulted in reduced viability in 7 out of 9 cell lines, but with no observed effect in non-malignant FT190 cell spheroids. CONCLUSIONS: Our results support the premise that CAMKKß-mediated AMPK activity is required, at least in part, to regulate autophagy induction in EOC spheroids and support cell viability in this in vitro model of EOC metastasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Feminino , Humanos , Metástase Neoplásica , Transdução de Sinais , Esferoides Celulares
16.
Mol Cancer Res ; 18(3): 488-500, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31744879

RESUMO

Epithelial ovarian cancer (EOC) spreads by direct dissemination of malignant cells and multicellular clusters, known as spheroids, into the peritoneum followed by implantation and growth on abdominal surfaces. Using a spheroid model system of EOC metastasis, we discovered that Liver kinase B1 (LKB1), encoded by the STK11 gene, and its canonical substrate AMP-activated protein kinase (AMPK) are activated in EOC spheroids, yet only LKB1 is required for cell survival. We have now generated STK11-knockout cell lines using normal human FT190 cells and three EOC cell lines, OVCAR8, HeyA8, and iOvCa147. STK11KO did not affect growth and viability in adherent culture, but it decreased anchorage-independent growth of EOC cells. EOC spheroids lacking LKB1 had markedly impaired growth and viability, whereas there was no difference in normal FT190 spheroids. To test whether LKB1 loss affects EOC metastasis, we performed intraperitoneal injections of OVCAR8-, HeyA8-, and iOvCa147-STK11KO cells, and respective controls. LKB1 loss exhibited a dramatic reduction on tumor burden and metastatic potential; in particular, OVCAR8-STK11KO tumors had evidence of extensive necrosis, apoptosis, and hypoxia. Interestingly, LKB1 loss did not affect AMPKα phosphorylation in EOC spheroids and tumor xenografts, indicating that LKB1 signaling to support EOC cell survival in spheroids and metastatic tumor growth occurs via other downstream mediators. We identified the dual-specificity phosphatase DUSP4 as a commonly upregulated protein due to LKB1 loss; indeed, DUSP4 knockdown in HeyA8-STK11KO cells partially restored spheroid formation and viability. IMPLICATIONS: LKB1 possesses key tumor-promoting activity independent of downstream AMPK signaling during EOC metastasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Epitelial do Ovário/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Metástase Neoplásica , Neoplasias Ovarianas/patologia , Esferoides Celulares
17.
Oncogene ; 39(8): 1619-1633, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31723239

RESUMO

Tumor cells must alter their antioxidant capacity for maximal metastatic potential. Yet the antioxidant adaptations required for ovarian cancer transcoelomic metastasis, which is the passive dissemination of cells in the peritoneal cavity, remain largely unexplored. Somewhat contradicting the need for oxidant scavenging are previous observations that expression of SIRT3, a nutrient stress sensor and regulator of mitochondrial antioxidant defenses, is often suppressed in many primary tumors. We have discovered that this mitochondrial deacetylase is specifically upregulated in a context-dependent manner in cancer cells. SIRT3 activity and expression transiently increased following ovarian cancer cell detachment and in tumor cells derived from malignant ascites of high-grade serous adenocarcinoma patients. Mechanistically, SIRT3 prevents mitochondrial superoxide surges in detached cells by regulating the manganese superoxide dismutase (SOD2). This mitochondrial stress response is under dual regulation by SIRT3. SIRT3 rapidly increases SOD2 activity as an early adaptation to cellular detachment, which is followed by SIRT3-dependent increases in SOD2 mRNA during sustained anchorage-independence. In addition, SIRT3 inhibits glycolytic capacity in anchorage-independent cells thereby contributing to metabolic changes in response to detachment. While manipulation of SIRT3 expression has few deleterious effects on cancer cells in attached conditions, SIRT3 upregulation and SIRT3-mediated oxidant scavenging are required for anoikis resistance in vitro following matrix detachment, and both SIRT3 and SOD2 are necessary for colonization of the peritoneal cavity in vivo. Our results highlight the novel context-specific, pro-metastatic role of SIRT3 in ovarian cancer.


Assuntos
Neoplasias Ovarianas/patologia , Sirtuína 3/metabolismo , Sobrevivência Celular , Ativação Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicólise , Humanos , Mitocôndrias/metabolismo , Metástase Neoplásica , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/deficiência , Sirtuína 3/genética , Superóxido Dismutase/metabolismo
18.
BMC Cancer ; 17(1): 594, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28854921

RESUMO

BACKGROUND: Epithelial ovarian cancer exhibits extensive interpatient and intratumoral heterogeneity, which can hinder successful treatment strategies. Herein, we investigated the efficacy of an emerging oncolytic, Maraba virus (MRBV), in an in vitro model of ovarian tumour heterogeneity. METHODS: Four ovarian high-grade serous cancer (HGSC) cell lines were isolated and established from a single patient at four points during disease progression. Limiting-dilution subcloning generated seven additional subclone lines to assess intratumoral heterogeneity. MRBV entry and oncolytic efficacy were assessed among all 11 cell lines. Low-density receptor (LDLR) expression, conditioned media treatments and co-cultures were performed to determine factors impacting MRBV oncolysis. RESULTS: Temporal and intratumoral heterogeneity identified two subpopulations of cells: one that was highly sensitive to MRBV, and another set which exhibited 1000-fold reduced susceptibility to MRBV-mediated oncolysis. We explored both intracellular and extracellular mechanisms influencing sensitivity to MRBV and identified that LDLR can partially mediate MRBV infection. LDLR expression, however, was not the singular determinant of sensitivity to MRBV among the HGSC cell lines and subclones. We verified that there were no apparent extracellular factors, such as type I interferon responses, contributing to MRBV resistance. However, direct cell-cell contact by co-culture of MRBV-resistant subclones with sensitive cells restored virus infection and oncolytic killing of mixed population. CONCLUSIONS: Our data is the first to demonstrate differential efficacy of an oncolytic virus in the context of both spatial and temporal heterogeneity of HGSC cells and to evaluate whether it will constitute a barrier to effective viral oncolytic therapy.


Assuntos
Neoplasias Epiteliais e Glandulares/patologia , Vírus Oncolíticos/fisiologia , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Heterogeneidade Genética , Humanos , Neoplasias Epiteliais e Glandulares/virologia , Terapia Viral Oncolítica/métodos , Neoplasias Ovarianas/virologia
19.
Mol Carcinog ; 56(1): 75-93, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26878598

RESUMO

Ovarian cancer is a leading cause of cancer-related death in women and the most lethal gynecological malignancy in the developed world. The morbidity and mortality of ovarian cancer underscore the need for novel treatment options. Artesunate (ART) is a well-tolerated anti-malarial drug that also has anti-cancer activity. In this study, we show that ART inhibited the in vitro growth of a panel of ovarian cancer cell lines, as well as the growth of ovarian cancer cells isolated from patients. Moreover, ART decreased tumor growth in vivo in a mouse model of ovarian cancer. ART-treated ovarian cancer cells showed a strong induction of reactive oxygen species (ROS) and reduced proliferation. ROS-dependent cell cycle arrest occurred in the G2/M phase whereas ROS-independent cell cycle arrest occurred in the G1 phase, depending on the concentration of ART to which ovarian cancer cells were exposed. The anti-proliferative effect of ART was associated with altered expression of several key cell cycle regulatory proteins, including cyclin D3, E2F-1, and p21, as well as inhibition of mechanistic target of rapamycin signaling. Exposure of ovarian cancer cells to higher concentrations of ART resulted in ROS-dependent DNA damage and cell death. Pretreatment of ovarian cancer cells with a pan-caspase inhibitor or ferroptosis inhibitor decreased but did not completely eliminate ART-mediated cytotoxicity, suggesting the involvement of both caspase-dependent and caspase-independent pathways of killing. These data show that ART has potent anti-proliferative and cytotoxic effects on ovarian cancer cells, and may therefore be useful in the treatment of ovarian cancer. © 2016 Wiley Periodicals, Inc.


Assuntos
Antimaláricos/uso terapêutico , Antineoplásicos/uso terapêutico , Artemisininas/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Ovário/efeitos dos fármacos , Animais , Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Artesunato , Linhagem Celular Tumoral , Feminino , Fase G2/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ovário/metabolismo , Ovário/patologia , Espécies Reativas de Oxigênio/metabolismo
20.
Am J Cancer Res ; 6(10): 2235-2251, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822414

RESUMO

Advanced or recurrent low-grade serous ovarian cancers (LGSC) are resistant to conventional systemic treatments. LGSC carry mutations in RAS or RAF, leading to several clinical trials evaluating MEK inhibitors (MEKi). As LGSC cell lines and xenografts have been difficult to establish, little is known about the efficacy and on-target activity of MEKi treatment in this disease. We compared four different MEKi (trametinib, selumetinib, binimetinib and refametinib) in novel LGSC patient-derived cell lines. Molecular characterization of these cells included copy-number variation and hotspot mutational analysis. Proliferation, apoptosis and cell viability assays were used to study drug efficacy. MEKi on-target efficacy was measured using western blotting and isoelectric point focusing for ERK1/2 phosphorylation. Ten LGSC cell lines were derived from 7 patients with advanced/recurrent disease. Copy number variation showed significant heterogeneity among cell lines, however all samples showed deletions in chromosome 9p21.3, and frequent copy number gains in chromosomes 12 and 20. Mutations in KRAS/NRAS were identified in 4 patients (57%) and RAS mutation status was not associated with higher baseline levels of ERK phosphorylation. Different degrees of MEKi sensitivity were observed in the LGSC cell lines. Two cell lines, both with KRAS mutations, were highly sensitive to MEKi. Drug anti-proliferative efficacy correlated with the degree of inhibition of ERK phosphorylation, with trametinib being the most potent agent. Differences in MEKi efficacy were observed in LGSC cell lines. Trametinib showed the greatest anti-proliferative effects. This study serves as a basis for much needed future research on MEKi drug efficacy in LGSC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA