Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 122(6): 6322-6373, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133803

RESUMO

Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.


Assuntos
Polímeros , Polímeros/química
2.
ACS Appl Mater Interfaces ; 13(32): 38680-38687, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34369767

RESUMO

Relative to other additive manufacturing modalities, vat photopolymerization (VP) offers designers superior surface finish, feature resolution, and throughput. However, poor interlayer network formation can limit a VP-printed part's tensile strength along the build axis. We demonstrate that the incorporation of carbamate bonds capable of undergoing dissociative exchange reactions provides improved interlayer network formation in VP-printed urethane acrylate polymers. In the presence of dibutyltin dilaurate catalyst, the exchange of these carbamate bonds enables rapid stress relaxation with an activation energy of 133 kJ/mol, consistent with a dissociative bond exchange process. Annealed XY tensile samples containing a catalyst demonstrate a 25% decrease in Young's modulus, attributed to statistical changes in network topology, while samples without a catalyst show no observable effect. Annealed ZX tensile samples printed with layers perpendicular to tensile load demonstrate an increase in elongation at break, indicative of self-healing. The strain at break for samples containing a catalyst increases from 33.9 to 56.0% after annealing but decreases from 48.1 to 32.1% after annealing in samples without a catalyst. This thermally activated bond exchange process improves the performance of VP-printed materials via self-healing across layers and provides a means to change Young's modulus after printing. Thus, the incorporation of carbamate bonds and appropriate catalysts in the VP-printing process provides a robust platform for enhancing material properties and performance.

3.
J Am Chem Soc ; 143(18): 7081-7087, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33908758

RESUMO

Covalent organic frameworks (COFs) generally leverage one or two monomers with specific sizes and shapes to access highly symmetric and periodic polymer networks. Almost all reported COFs employ the minimum sets of monomers needed for the polymerization (usually two, sometimes one) and crystallize in high-symmetry topologies. COFs synthesized from more than two monomers usually employ mixtures with different pendant functionalities to distribute these groups statistically throughout the structure, or monomers with different sizes in ratios targeting lower symmetry topologies. Here, we demonstrate that mixtures of monomers with different lengths generate single-phase, hexagonal two-dimensional covalent organic framework (2D COF) solid solutions at continuously variable feed ratios. X-ray diffraction measurements, Fourier-transform infrared spectroscopy, and Pawley refinement indicate that both monomers distribute randomly within the same lattice, and the lattice parameters continuously increase as more of the larger linker is incorporated. Furthermore, COF solid solutions are accessed directly by polymerizing a mixture of monomers but not via linker exchange from a preformed COF. As strain develops from the lattice accommodating monomers with different sizes, the nonlinear relationship between the monomer incorporation and the COF's lattice parameters suggests that bond-bending of the monomers plays a role in incorporating monomers of different lengths into the solid solutions. Solid solution formation represents a new strategy to design 2D COFs and increase their complexity. Specifically, varying the monomer composition of a given network enables many properties, such as the average pore size, to be continuously tuned between those of corresponding pure COFs.

4.
ACS Cent Sci ; 6(6): 921-927, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32607439

RESUMO

Cross-linked polyurethane (PU) is extensively used as thermoset foam; however, methods to directly reprocess PU foam waste derived from commercial sources into similar value materials have not been developed. We demonstrate that introducing dibutyltin dilaurate (DBTDL) into cross-linked PU foams and films enables their reprocessing at elevated temperatures via dynamic carbamate exchange reactions. Both model and commercial cross-linked PU foams were continuously reprocessed using twin-screw extrusion to remove gaseous filler and produce PU filaments or films with elastomeric or rigid thermoset mechanical properties. The properties of microcompounded model PU foam were in excellent agreement with PU film synthesized using the same monomers, indicating that this process occurs efficiently. These findings will enable the bulk reprocessing of commercial thermoset PU waste and inspire the further development of reprocessing methods for other thermosets and the compatibilization of chemically distinct cross-linked materials.

5.
ACS Macro Lett ; 7(10): 1226-1231, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35651259

RESUMO

Polymer networks that are cross-linked by dynamic covalent bonds often sacrifice the robust mechanical properties of traditional thermosets in exchange for rapid and efficient reprocessability. Polyurethanes are attractive materials for reprocessable cross-linked polymers because of their excellent mechanical properties, widespread use, and ease of synthesis, but their syntheses typically rely on harmful isocyanate precursors. Polyhydroxyurethanes (PHUs), derived from amines and cyclic carbonates, are promising alternatives to traditional polyurethanes. PHU networks are reprocessable via transcarbamoylation reactions even in the absence of external catalysts, but this process occurs over hours at temperatures above 150 °C. We have dramatically shortened the reprocessing times of PHU networks by incorporating dynamic disulfide bonds. Using cystamine as a comonomer gives materials with similar thermal stability and mechanical properties to other rigid cross-linked PHUs. Despite their excellent mechanical properties, these materials show rapid stress relaxation and have characteristic relaxation times as low as 30 s at 150 °C. This property enables reprocessing with quantitative recovery of cross-link density as measured by DMTA after only 30 min of elevated-temperature compression molding. Disulfide incorporation is a promising approach to obtain reprocessable, cross-linked PHU resins that are not derived from isocyanates.

6.
Artigo em Inglês | MEDLINE | ID: mdl-26217192

RESUMO

The degeneration of dopaminergic neurons in the substantia nigra pars compacta leads to parkinsonian motor symptoms via changes in electrophysiological activity throughout the basal ganglia. High-frequency deep brain stimulation (DBS) partially treats these symptoms, but the mechanisms are unclear. We hypothesize that motor symptoms of Parkinson's disease (PD) are associated with increased information transmission from basal ganglia output neurons to motor thalamus input neurons and that therapeutic DBS of the subthalamic nucleus (STN) treats these symptoms by reducing this extraneous information transmission. We tested these hypotheses in a unilateral, 6-hydroxydopamine-lesioned rodent model of hemiparkinsonism. Information transfer between basal ganglia output neurons and motor thalamus input neurons increased in both the orthodromic and antidromic directions with hemiparkinsonian (hPD) onset, and these changes were reversed by behaviorally therapeutic STN-DBS. Omnidirectional information increases in the parkinsonian state underscore the detrimental nature of that pathological information and suggest a loss of information channel independence. Therapeutic STN-DBS reduced that pathological information, suggesting an effective increase in the number of independent information channels. We interpret these data with a model in which pathological information and fewer information channels diminishes the scope of possible motor activities, driving parkinsonian symptoms. In this model, STN-DBS restores information-channel independence by eliminating or masking the parkinsonism-associated information, and thus enlarges the scope of possible motor activities, alleviating parkinsonian symptoms.


Assuntos
Estimulação Encefálica Profunda/métodos , Rede Nervosa/fisiologia , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/terapia , Núcleo Subtalâmico/fisiologia , Tálamo/patologia , Potenciais de Ação/fisiologia , Adrenérgicos/toxicidade , Animais , Biofísica , Modelos Animais de Doenças , Feminino , Lateralidade Funcional/efeitos dos fármacos , Lateralidade Funcional/fisiologia , Masculino , Feixe Prosencefálico Mediano/fisiologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA