Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Atten Percept Psychophys ; 86(4): 1248-1258, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684591

RESUMO

Visual short-term memory (VSTM), the ability to store information no longer visible, is essential for human behavior. VSTM limits vary across the population and are correlated with overall cognitive ability. It has been proposed that low-memory individuals are unable to select only relevant items for storage and that these limitations are greatest when memory demands are high. However, it is unknown whether these effects simply reflect task difficulty and whether they impact the quality of memory representations. Here we varied the number of items presented, or set size, to investigate the effect of memory demands on the performance of visual short-term memory across low- and high-memory groups. Group differences emerged as set size exceeded memory limits, even when task difficulty was controlled. In a change-detection task, the low-memory group performed more poorly when set size exceeded their memory limits. We then predicted that low-memory individuals encoding items beyond measured memory limits would result in the degraded fidelity of memory representations. A continuous report task confirmed that low, but not high, memory individuals demonstrated decreased memory fidelity as set size exceeded measured memory limits. The current study demonstrates that items held in VSTM are stored distinctly across groups and task demands. These results link the ability to maintain high quality representations with overall cognitive ability.


Assuntos
Atenção , Memória de Curto Prazo , Reconhecimento Visual de Modelos , Humanos , Adulto Jovem , Masculino , Feminino , Tempo de Reação , Percepção de Cores , Adulto , Orientação , Adolescente
2.
J Vis ; 20(6): 5, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32511666

RESUMO

Perceptual learning (PL), often characterized by improvements in perceptual performance with training that are specific to the stimulus conditions used during training, exemplifies experience-dependent cortical plasticity. An improved understanding of how neuromodulatory systems shape PL promises to provide new insights into the mechanisms of plasticity, and by extension how PL can be generated and applied most efficiently. Previous studies have reported enhanced PL in human subjects following administration of drugs that increase signaling through acetylcholine (ACh) receptors, and physiological evidence indicates that ACh sharpens neuronal selectivity, suggesting that this neuromodulator supports PL and its stimulus specificity. Here we explored the effects of enhancing endogenous cholinergic signaling during PL of a visual texture discrimination task. We found that training on this task in the lower visual field yielded significant behavioral improvement at the trained location. However, a single dose of the cholinesterase inhibitor donepezil, administered before training, did not significantly impact either the magnitude or the location specificity of texture discrimination learning compared with placebo. We discuss potential explanations for discrepant findings in the literature regarding the role of ACh in visual PL, including possible differences in plasticity mechanisms in the dorsal and ventral cortical processing streams.


Assuntos
Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Percepção de Forma/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos , Adulto , Aprendizagem por Discriminação/fisiologia , Discriminação Psicológica , Feminino , Percepção de Forma/fisiologia , Humanos , Aprendizagem/fisiologia , Masculino , Campos Visuais , Percepção Visual/fisiologia , Adulto Jovem
3.
J Neurosci ; 38(6): 1511-1519, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29311140

RESUMO

Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information.SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. Cognitive mechanisms and neural activity underlying these tasks show a large degree of overlap. To examine whether activity within the posterior parietal cortex (PPC) reflects object maintenance across distraction or sustained attention per se, it is necessary to control for attentional demands inherent in VSTM tasks. We demonstrate that activity in PPC reflects VSTM demands even after controlling for attention; remembering items across distraction modulates relationships between parietal and other areas differently than during periods of sustained attention. Our study fills a gap in the literature by directly comparing and controlling for overlap between visual attention and VSTM tasks.


Assuntos
Atenção/fisiologia , Cognição/fisiologia , Memória de Curto Prazo/fisiologia , Lobo Parietal/fisiologia , Adulto , Movimentos Oculares/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
4.
Psychon Bull Rev ; 24(4): 1113-1120, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28050774

RESUMO

Successful interaction with the environment requires the ability to flexibly allocate resources to different locations in the visual field. Recent evidence suggests that visual short-term memory (VSTM) resources are distributed asymmetrically across the visual field based upon task demands. Here, we propose that context, rather than the stimulus itself, determines asymmetrical distribution of VSTM resources. To test whether context modulates the reallocation of resources to the right visual field, task set, defined by memory-load, was manipulated to influence visual short-term memory performance. Performance was measured for single-feature objects embedded within predominantly single- or two-feature memory blocks. Therefore, context was varied to determine whether task set directly predicts changes in visual field biases. In accord with the dynamic reallocation of resources hypothesis, task set, rather than aspects of the physical stimulus, drove improvements in performance in the right- visual field. Our results show, for the first time, that preparation for upcoming memory demands directly determines how resources are allocated across the visual field.


Assuntos
Atenção , Cognição , Memória de Curto Prazo , Percepção Visual , Adolescente , Humanos , Campos Visuais , Adulto Jovem
5.
J Neurosci ; 35(2): 508-17, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25589746

RESUMO

Posterior parietal cortex contains several areas defined by topographically organized maps of the contralateral visual field. However, recent studies suggest that ipsilateral stimuli can elicit larger responses in the right than left hemisphere within these areas, depending on task demands. Here we determined the effects of spatial attention on the set of visual field locations (the population receptive field [pRF]) that evoked a response for each voxel in human topographic parietal cortex. A two-dimensional Gaussian was used to model the pRF in each voxel, and we measured the effects of attention on not only the center (preferred visual field location) but also the size (visual field extent) of the pRF. In both hemispheres, larger pRFs were associated with attending to the mapping stimulus compared with attending to a central fixation point. In the left hemisphere, attending to the stimulus also resulted in more peripheral preferred locations of contralateral representations, compared with attending fixation. These effects of attention on both pRF size and preferred location preserved contralateral representations in the left hemisphere. In contrast, attentional modulation of pRF size but not preferred location significantly increased representation of the ipsilateral (right) visual hemifield in right parietal cortex. Thus, attention effects in topographic parietal cortex exhibit hemispheric asymmetries similar to those seen in hemispatial neglect. Our findings suggest potential mechanisms underlying the behavioral deficits associated with this disorder.


Assuntos
Atenção , Lateralidade Funcional , Lobo Parietal/fisiologia , Córtex Visual/fisiologia , Campos Visuais , Mapeamento Encefálico , Potenciais Evocados Visuais , Feminino , Humanos , Masculino , Percepção de Movimento
6.
Cereb Cortex ; 24(3): 773-84, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23180753

RESUMO

Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Percepção Espacial/fisiologia , Estimulação Acústica , Adolescente , Adulto , Córtex Cerebral/irrigação sanguínea , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Julgamento , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/irrigação sanguínea , Estimulação Luminosa , Máquina de Vetores de Suporte , Adulto Jovem
7.
Front Psychol ; 4: 681, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24198792

RESUMO

Cognitive and information processing deficits are core features and important sources of disability in schizophrenia. Our understanding of the neural substrates of these deficits remains incomplete, in large part because the complexity of impairments in schizophrenia makes the identification of specific deficits very challenging. Vision science presents unique opportunities in this regard: many years of basic research have led to detailed characterization of relationships between structure and function in the early visual system and have produced sophisticated methods to quantify visual perception and characterize its neural substrates. We present a selective review of research that illustrates the opportunities for discovery provided by visual studies in schizophrenia. We highlight work that has been particularly effective in applying vision science methods to identify specific neural abnormalities underlying information processing deficits in schizophrenia. In addition, we describe studies that have utilized psychophysical experimental designs that mitigate generalized deficit confounds, thereby revealing specific visual impairments in schizophrenia. These studies contribute to accumulating evidence that early visual cortex is a useful experimental system for the study of local cortical circuit abnormalities in schizophrenia. The high degree of similarity across neocortical areas of neuronal subtypes and their patterns of connectivity suggests that insights obtained from the study of early visual cortex may be applicable to other brain regions. We conclude with a discussion of future studies that combine vision science and neuroimaging methods. These studies have the potential to address pressing questions in schizophrenia, including the dissociation of local circuit deficits vs. impairments in feedback modulation by cognitive processes such as spatial attention and working memory, and the relative contributions of glutamatergic and GABAergic deficits.

8.
Wiley Interdiscip Rev Cogn Sci ; 4(4): 327-340, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25089167

RESUMO

Over 20 distinct cerebral cortical areas contain spatial map representations of the visual field. These retinotopic, or visuotopic, cortical areas occur not only in the occipital lobe but also in the parietal, temporal, and frontal lobes. The cognitive influences of visuospatial attention operate via these cortical maps and can support selection of multiple objects at the same time. In early visual cortical areas, spatial attention enhances responses of selected items and diminishes the responses to distracting items. In higher order cortex, the maps support a spatial indexing role, keeping track of the items to be attended. These maps also support visual short-term memory (VSTM) representations. In each hemisphere, all the known maps respond selectively to stimuli presented within the contralateral visual field. However, a hemispheric asymmetry emerges when the attentional or VSTM demands of a task become significant. In the parietal lobe, the right hemisphere visuotopic maps switch from coding only contralateral visual targets to coding memory and attention targets across the entire visual field. This emergent asymmetry has important implications for understanding hemispatial neglect syndrome, and supports a dynamic network form of the representational model of neglect. WIREs Cogn Sci 2013, 4:327-340. doi: 10.1002/wcs.1230 This article is categorized under: Psychology > Attention Neuroscience > Cognition.

9.
Front Behav Neurosci ; 6: 61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049505

RESUMO

Acetylcholine (ACh) reduces the spatial spread of excitatory fMRI responses in early visual cortex and receptive field size of V1 neurons. We investigated the perceptual consequences of these physiological effects of ACh with surround suppression and crowding, two phenomena that involve spatial interactions between visual field locations. Surround suppression refers to the reduction in perceived stimulus contrast by a high-contrast surround stimulus. For grating stimuli, surround suppression is selective for the relative orientations of the center and surround, suggesting that it results from inhibitory interactions in early visual cortex. Crowding refers to impaired identification of a peripheral stimulus in the presence of flankers and is thought to result from excessive integration of visual features. We increased synaptic ACh levels by administering the cholinesterase inhibitor donepezil to healthy human subjects in a placebo-controlled, double-blind design. In Experiment 1, we measured surround suppression of a central grating using a contrast discrimination task with three conditions: (1) surround grating with the same orientation as the center (parallel), (2) surround orthogonal to the center, or (3) no surround. Contrast discrimination thresholds were higher in the parallel than in the orthogonal condition, demonstrating orientation-specific surround suppression (OSSS). Cholinergic enhancement decreased thresholds only in the parallel condition, thereby reducing OSSS. In Experiment 2, subjects performed a crowding task in which they reported the identity of a peripheral letter flanked by letters on either side. We measured the critical spacing between the targets and flanking letters that allowed reliable identification. Cholinergic enhancement with donepezil had no effect on critical spacing. Our findings suggest that ACh reduces spatial interactions in tasks involving segmentation of visual field locations but that these effects may be limited to early visual cortical processing.

10.
J Neurosci ; 30(38): 12581-8, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20861364

RESUMO

Visual short-term memory (VSTM) briefly maintains a limited sampling from the visual world. Activity in the intraparietal sulcus (IPS) tightly correlates with the number of items stored in VSTM. This activity may occur in or near to multiple distinct visuotopically mapped cortical areas that have been identified in IPS. To understand the topographic and spatial properties of VSTM, we investigated VSTM activity in visuotopic IPS regions using functional magnetic resonance imaging. VSTM drove areas IPS0-2, but largely spared IPS3-4. Under visual stimulation, these areas in both hemispheres code the contralateral visual hemifield. In contrast to the hemispheric symmetry observed with visual stimulation, an asymmetry emerged during VSTM with increasing memory load. The left hemisphere exhibited load-dependent activity only for contralateral memory items; right hemisphere activity reflected VSTM load regardless of visual-field location. Our findings demonstrate that VSTM induces a switch in spatial representation in right hemisphere IPS from contralateral to full-field coding. The load dependence of right hemisphere effects argues that memory-dependent and/or attention-dependent processes drive this change in spatial processing. This offers a novel means for investigating spatial-processing impairments in hemispatial neglect.


Assuntos
Lateralidade Funcional/fisiologia , Memória de Curto Prazo/fisiologia , Lobo Parietal/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Análise de Variância , Atenção/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Desempenho Psicomotor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA