Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Respir Res ; 20(1): 10, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646908

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is characterized by a progressive and irreversible respiratory failure. Non-invasive markers of disease activity are essential for prognosis and evaluation of early response to anti-fibrotic treatments. OBJECTIVES: The aims of this study were to determine whether fluorodeoxyglucose ([18F]-FDG) lung uptake is reduced after initiation of pirfenidone or nintedanib and to assess its possible use as a prognostic factor. METHODS: [18F]-FDG PET/CT was performed in IPF patients and in a murine model of pulmonary fibrosis. PET/CTs were performed at day 8 and day 15 post-instillation of bleomycin in pirfenidone- or vehicule-treated mice. In IPF patients, PET-CT was performed before and 3 months after the initiation of pirfenidone or nintedanib. RESULTS: In bleomycin-treated mice, pirfenidone significantly reduced the [18F]-FDG uptake compared to vehicule-treated mice at day 15 (p < 0.001), whereas no difference was observed at day 8 after bleomycin administration. In IPF patients, [18F]-FDG lung uptake before and after 3 months of treatment by nintedanib (n = 11) or pirfenidone (n = 14) showed no significant difference regardless the antifibrotic treatment. Moreover, no difference was noticed between patients with progressive or non-progressive disease at one year of follow up. CONCLUSIONS: Pirfenidone significantly reduces the lung [18F]-FDG uptake during the fibrotic phase in a mouse model of IPF. However, these preclinical data were not confirmed in IPF patients 3 months after the initiation of antifibrotic therapy. [18F]-FDG seems therefore not useful in clinical practice to assess the early response of IPF patients to nintedanib or pirfenidone.


Assuntos
Fluordesoxiglucose F18 , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/tratamento farmacológico , Indóis/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Piridonas/uso terapêutico , Idoso , Animais , Antineoplásicos/uso terapêutico , Feminino , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estudos Prospectivos
2.
Oncogene ; 37(9): 1237-1250, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242606

RESUMO

Cancer research is increasingly dependent of patient-derived xenograft model (PDX). However, a major point of concern regarding the PDX model remains the replacement of the human stroma with murine counterpart. In the present work we aimed at clarifying the significance of the human-to-murine stromal replacement for the fidelity of colorectal cancer (CRC) and liver metastasis (CRC-LM) PDX model. We have conducted a comparative metabolic analysis between 6 patient tumors and corresponding PDX across 4 generations. Metabolic signatures of cancer cells and stroma were measured separately by MALDI-imaging, while metabolite changes in entire tumors were quantified using mass spectrometry approach. Measurement of glucose metabolism was also conducted in vivo using [18F]-fluorodeoxyglucose (FDG) and positron emission tomography (PET). In CRC/CRC-LM PDX model, human stroma was entirely replaced at the second generation. Despite this change, MALDI-imaging demonstrated that the metabolic profiles of both stromal and cancer cells remained stable for at least four generations in comparison to the original patient material. On the tumor level, profiles of 86 water-soluble metabolites as well as 93 lipid mediators underlined the functional stability of the PDX model. In vivo PET measurement of glucose uptake (reflecting tumor glucose metabolism) supported the ex vivo observations. Our data show for the first time that CRC/CRC-LM PDX model maintains the functional stability at the metabolic level despite the early replacement of the human stroma by murine cells. The findings demonstrate that human cancer cells actively educate murine stromal cells during PDX development to adopt the human-like phenotype.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Neoplasias Hepáticas/metabolismo , Metaboloma , Células Estromais/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Estudos de Coortes , Neoplasias Colorretais/patologia , Feminino , Humanos , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo , Células Estromais/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Mol Sci ; 18(1)2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28117708

RESUMO

Cancer cells generally rely on aerobic glycolysis as a major source of energy. Methylglyoxal (MG), a dicarbonyl compound that is produced as a side product during glycolysis, is highly reactive and induces the formation of advanced glycation end-products that are implicated in several pathologies including cancer. All mammalian cells have an enzymatic defense against MG composed by glyoxalases GLO1 and GLO2 that converts MG to d-lactate. Colorectal cancer (CRC) is one of the most frequently occurring cancers with high morbidity and mortality. In this study, we used immunohistochemistry to examine the level of MG protein adducts, in a series of 102 CRC human tumors divided into four clinical stages. We consistently detected a high level of MG adducts and low GLO1 activity in high stage tumors compared to low stage ones suggesting a pro-tumor role for dicarbonyl stress. Accordingly, GLO1 depletion in CRC cells promoted tumor growth in vivo that was efficiently reversed using carnosine, a potent MG scavenger. Our study represents the first demonstration that MG adducts accumulation is a consistent feature of high stage CRC tumors. Our data point to MG production and detoxification levels as an important molecular link between exacerbated glycolytic activity and CRC progression.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Aldeído Pirúvico/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Adulto , Idoso , Animais , Carnosina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Galinhas , Estudos de Coortes , Fluordesoxiglucose F18 , Glicólise/efeitos dos fármacos , Humanos , Lactoilglutationa Liase/metabolismo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons , Pirimidinas/farmacologia
4.
J Nucl Med ; 56(1): 127-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537989

RESUMO

UNLABELLED: Idiopathic pulmonary fibrosis is characterized by a progressive and irreversible respiratory failure. Validated noninvasive methods able to assess disease activity are essential for prognostic purposes as well as for the evaluation of emerging antifibrotic treatments. METHODS: C57BL/6 mice were used in a murine model of pulmonary fibrosis induced by an intratracheal instillation of bleomycin (control mice were instilled with a saline solution). At different times after instillation, PET/CT with (18)F-FDG- or (18)F-4-fluorobenzamido-N-ethylamino-maleimide ((18)F-FBEM)-labeled leukocytes was performed to assess metabolic activity and leukocyte recruitment, respectively. RESULTS: In bleomycin-treated mice, a higher metabolic activity was measured on (18)F-FDG PET/CT scans from day 7 to day 24 after instillation, with a peak of activity measured at day 14. Of note, lung mean standardized uptake values correlated with bleomycin doses, histologic score of fibrosis, lung hydroxyproline content, and weight loss. Moreover, during the inflammatory phase of the model (day 7), but not the fibrotic phase (day 23), bleomycin-treated mice presented with an enhanced leukocyte recruitment as assessed by (18)F-FBEM-labeled leukocyte PET/CT. Autoradiographic analysis of lung sections and CD45 immunostaining confirm the higher and early recruitment of leukocytes in bleomycin-treated mice, compared with control mice. CONCLUSION: (18)F-FDG- and (18)F-FBEM-labeled leukocyte PET/CT enable monitoring of metabolic activity and leukocyte recruitment in a mouse model of pulmonary fibrosis. Implications for preclinical evaluation of antifibrotic therapy are expected.


Assuntos
Fluordesoxiglucose F18 , Leucócitos/imunologia , Leucócitos/metabolismo , Maleimidas , Tomografia por Emissão de Pósitrons , Fibrose Pulmonar/metabolismo , Tomografia Computadorizada por Raios X , Animais , Transporte Biológico/efeitos dos fármacos , Bleomicina/efeitos adversos , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Fibrose , Fluordesoxiglucose F18/metabolismo , Leucócitos/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Maleimidas/metabolismo , Camundongos , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/patologia , Coloração e Rotulagem
5.
J Exp Med ; 210(9): 1675-84, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23940256

RESUMO

Interleukin (IL) 12 and IL23 are two related heterodimeric cytokines produced by antigen-presenting cells. The balance between these two cytokines plays a crucial role in the control of Th1/Th17 responses and autoimmune inflammation. Most studies focused on their transcriptional regulation. Herein, we explored the role of the adenine and uridine-rich element (ARE)-binding protein tristetraprolin (TTP) in influencing mRNA stability of IL12p35, IL12/23p40, and IL23p19 subunits. LPS-stimulated bone marrow-derived dendritic cells (BMDCs) from TTP(-/-) mice produced normal levels of IL12/23p40. Production of IL12p70 was modestly increased in these conditions. In contrast, we observed a strong impact of TTP on IL23 production and IL23p19 mRNA stability through several AREs in the 3' untranslated region. TTP(-/-) mice spontaneously develop an inflammatory syndrome characterized by cachexia, myeloid hyperplasia, dermatitis, and erosive arthritis. We observed IL23p19 expression within skin lesions associated with exacerbated IL17A and IL22 production by infiltrating γδ T cells and draining lymph node CD4 T cells. We demonstrate that the clinical and immunological parameters associated with TTP deficiency were completely dependent on the IL23-IL17A axis. We conclude that tight control of IL23 mRNA stability by TTP is critical to avoid severe inflammation.


Assuntos
Inflamação/genética , Inflamação/prevenção & controle , Interleucina-23/genética , Estabilidade de RNA/genética , Tristetraprolina/metabolismo , Regiões 3' não Traduzidas/genética , Elementos Ricos em Adenilato e Uridilato/genética , Animais , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/patologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Remodelação Óssea/efeitos dos fármacos , Remodelação Óssea/genética , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Células HEK293 , Humanos , Interleucina-17/metabolismo , Interleucina-23/biossíntese , Subunidade p19 da Interleucina-23/metabolismo , Interleucinas/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Estabilidade de RNA/efeitos dos fármacos , Radiografia , Síndrome , Tristetraprolina/deficiência , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA