Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RNA ; 30(3): 213-222, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164607

RESUMO

Certain positive-sense single-stranded RNA viruses contain elements at their 3' termini that structurally mimic tRNAs. These tRNA-like structures (TLSs) are classified based on which amino acid is covalently added to the 3' end by host aminoacyl-tRNA synthetase. Recently, a cryoEM reconstruction of a representative tyrosine-accepting tRNA-like structure (TLSTyr) from brome mosaic virus (BMV) revealed a unique mode of recognition of the viral anticodon-mimicking domain by tyrosyl-tRNA synthetase. Some viruses in the hordeivirus genus of Virgaviridae are also selectively aminoacylated with tyrosine, yet these TLS RNAs have a different architecture in the 5' domain that comprises the atypical anticodon loop mimic. Herein, we present bioinformatic and biochemical data supporting a distinct secondary structure for the 5' domain of the hordeivirus TLSTyr compared to those in Bromoviridae Despite forming a different secondary structure, the 5' domain is necessary to achieve robust in vitro aminoacylation. Furthermore, a chimeric RNA containing the 5' domain from the BMV TLSTyr and the 3' domain from a hordeivirus TLSTyr are aminoacylated, illustrating modularity in these structured RNA elements. We propose that the structurally distinct 5' domain of the hordeivirus TLSTyrs performs the same role in mimicking the anticodon loop as its counterpart in the BMV TLSTyr Finally, these structurally and phylogenetically divergent types of TLSTyr provide insight into the evolutionary connections between all classes of viral tRNA-like structures.


Assuntos
Bromovirus , Vírus de RNA , Tirosina-tRNA Ligase , Sequência de Bases , Anticódon/genética , RNA Viral/química , RNA de Transferência/química , Bromovirus/genética , Bromovirus/metabolismo , Vírus de RNA/genética , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo , Tirosina/genética , Tirosina/metabolismo , Conformação de Ácido Nucleico
2.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808774

RESUMO

Certain viral RNAs encode proteins downstream of the main protein coding region, expressed through "termination-reinitiation" events, dependent on RNA structure. RNA elements located upstream of the first stop codon within these viral mRNAs bind the ribosome, preventing ribosome recycling and inducing reinitiation. We used bioinformatic methods to identify new examples of viral reinitiation-stimulating RNAs and experimentally verified their secondary structure and function. We determined the structure of a representative viral RNA-ribosome complex using cryoEM. 3D classification and variability analyses reveal that the viral RNA structure can sample a range of conformations while remaining tethered to the ribosome, which enabling the ribosome to find a reinitiation start site within a limited range of mRNA sequence. Evaluating the conserved features and constraints of this entire RNA class in the context of the cryoEM reconstruction provides insight into mechanisms enabling reinitiation, a translation regulation strategy employed by many other viral and eukaryotic systems.

3.
RNA ; 29(7): 865-884, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024263

RESUMO

The gene expression pathway from DNA sequence to functional protein is not as straightforward as simple depictions of the central dogma might suggest. Each step is highly regulated, with complex and only partially understood molecular mechanisms at play. Translation is one step where the "one gene-one protein" paradigm breaks down, as often a single mature eukaryotic mRNA leads to more than one protein product. One way this occurs is through translation reinitiation, in which a ribosome starts making protein from one initiation site, translates until it terminates at a stop codon, but then escapes normal recycling steps and subsequently reinitiates at a different downstream site. This process is now recognized as both important and widespread, but we are only beginning to understand the interplay of factors involved in termination, recycling, and initiation that cause reinitiation events. There appear to be several ways to subvert recycling to achieve productive reinitiation, different types of stresses or signals that trigger this process, and the mechanism may depend in part on where the event occurs in the body of an mRNA. This perspective reviews the unique characteristics and mechanisms of reinitiation events, highlights the similarities and differences between three major scenarios of reinitiation, and raises outstanding questions that are promising avenues for future research.


Assuntos
Proteínas , Ribossomos , Ribossomos/genética , Ribossomos/metabolismo , Códon de Terminação/genética , Sequência de Bases , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fases de Leitura Aberta , Biossíntese de Proteínas
4.
RNA Biol ; 19(1): 1059-1076, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093908

RESUMO

Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more 'digital' gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.


Assuntos
Aptâmeros de Nucleotídeos , Riboswitch , Aptâmeros de Nucleotídeos/química , Ligantes , RNA , Riboswitch/genética
5.
Science ; 374(6570): 955-960, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34793227

RESUMO

Viruses require multifunctional structured RNAs to hijack their host's biochemistry, but their mechanisms can be obscured by the difficulty of solving conformationally dynamic RNA structures. Using cryo­electron microscopy (cryo-EM), we visualized the structure of the mysterious viral transfer RNA (tRNA)­like structure (TLS) from the brome mosaic virus, which affects replication, translation, and genome encapsidation. Structures in isolation and those bound to tyrosyl-tRNA synthetase (TyrRS) show that this ~55-kilodalton purported tRNA mimic undergoes large conformational rearrangements to bind TyrRS in a form that differs substantially from that of tRNA. Our study reveals how viral RNAs can use a combination of static and dynamic RNA structures to bind host machinery through highly noncanonical interactions, and we highlight the utility of cryo-EM for visualizing small, conformationally dynamic structured RNAs.


Assuntos
Bromovirus/genética , RNA de Transferência/química , RNA Viral/química , Tirosina-tRNA Ligase/metabolismo , Bromovirus/fisiologia , Microscopia Crioeletrônica , Genoma Viral , Modelos Moleculares , Mimetismo Molecular , Conformação de Ácido Nucleico , Phaseolus/enzimologia , Phaseolus/virologia , Ligação Proteica , Conformação Proteica , RNA de Transferência/metabolismo , RNA Viral/metabolismo , Aminoacilação de RNA de Transferência , Tirosina-tRNA Ligase/química , Replicação Viral
6.
RNA ; 27(6): 653-664, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811147

RESUMO

Structured RNA elements are common in the genomes of RNA viruses, often playing critical roles during viral infection. Some viral RNA elements use forms of tRNA mimicry, but the diverse ways this mimicry can be achieved are poorly understood. Histidine-accepting tRNA-like structures (TLSHis) are examples found at the 3' termini of some positive-sense single-stranded RNA (+ssRNA) viruses where they interact with several host proteins, induce histidylation of the RNA genome, and facilitate processes important for infection, to include genome replication. As only five TLSHis examples had been reported, we explored the possible larger phylogenetic distribution and diversity of this TLS class using bioinformatic approaches. We identified many new examples of TLSHis, yielding a rigorous consensus sequence and secondary structure model that we validated by chemical probing of representative TLSHis RNAs. We confirmed new examples as authentic TLSHis by demonstrating their ability to be histidylated in vitro, then used mutational analyses to imply a tertiary interaction that is likely analogous to the D- and T-loop interaction found in canonical tRNAs. These results expand our understanding of how diverse RNA sequences achieve tRNA-like structure and function in the context of viral RNA genomes and lay the groundwork for high-resolution structural studies of tRNA mimicry by histidine-accepting TLSs.


Assuntos
Vírus de RNA de Cadeia Positiva/química , RNA de Transferência de Histidina/química , Aminoacilação , Conformação de Ácido Nucleico , Filogenia , Vírus de RNA de Cadeia Positiva/classificação , Vírus de RNA de Cadeia Positiva/genética , Vírus de RNA de Cadeia Positiva/metabolismo , RNA de Transferência de Histidina/genética , RNA de Transferência de Histidina/metabolismo , Saccharomyces cerevisiae
7.
RNA ; 27(1): 27-39, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33008837

RESUMO

Viruses commonly use specifically folded RNA elements that interact with both host and viral proteins to perform functions important for diverse viral processes. Examples are found at the 3' termini of certain positive-sense ssRNA virus genomes where they partially mimic tRNAs, including being aminoacylated by host cell enzymes. Valine-accepting tRNA-like structures (TLSVal) are an example that share some clear homology with canonical tRNAs but have several important structural differences. Although many examples of TLSVal have been identified, we lacked a full understanding of their structural diversity and phylogenetic distribution. To address this, we undertook an in-depth bioinformatic and biochemical investigation of these RNAs, guided by recent high-resolution structures of a TLSVal We cataloged many new examples in plant-infecting viruses but also in unrelated insect-specific viruses. Using biochemical and structural approaches, we verified the secondary structure of representative TLSVal substrates and tested their ability to be valylated, confirming previous observations of structural heterogeneity within this class. In a few cases, large stem-loop structures are inserted within variable regions located in an area of the TLS distal to known host cell factor binding sites. In addition, we identified one virus whose TLS has switched its anticodon away from valine, causing a loss of valylation activity; the implications of this remain unclear. These results refine our understanding of the structural and functional mechanistic details of tRNA mimicry and how this may be used in viral infection.


Assuntos
Variação Genética , Vírus de Insetos/genética , Filogenia , Vírus de Plantas/genética , RNA de Transferência de Valina/química , RNA Viral/química , Anticódon/química , Anticódon/metabolismo , Sequência de Bases , Sítios de Ligação , Biologia Computacional , Vírus de Insetos/classificação , Vírus de Insetos/metabolismo , Modelos Moleculares , Mimetismo Molecular , Vírus de Plantas/classificação , Vírus de Plantas/metabolismo , Dobramento de RNA , RNA de Transferência de Valina/genética , RNA de Transferência de Valina/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Homologia de Sequência do Ácido Nucleico , Valina/metabolismo
8.
RNA ; 26(6): 675-693, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32165489

RESUMO

Comparative sequence analyses have been used to discover numerous classes of structured noncoding RNAs, some of which are riboswitches that specifically recognize small-molecule or elemental ion ligands and influence expression of adjacent downstream genes. Determining the correct identity of the ligand for a riboswitch candidate typically is aided by an understanding of the genes under its regulatory control. Riboswitches whose ligands were straightforward to identify have largely been associated with well-characterized metabolic pathways, such as coenzyme or amino acid biosynthesis. Riboswitch candidates whose ligands resist identification, collectively known as orphan riboswitches, are often associated with genes coding for proteins of unknown function, or genes for various proteins with no established link to one another. The cognate ligands for 16 former orphan riboswitch motifs have been identified to date. The successful pursuit of the ligands for these classes has provided insight into areas of biology that are not yet fully explored, such as ion homeostasis, signaling networks, and other previously underappreciated biochemical or physiological processes. Herein we discuss the strategies and methods used to match ligands with orphan riboswitch classes, and overview the lessons learned to inform and motivate ongoing efforts to identify ligands for the many remaining candidates.


Assuntos
Regulação Bacteriana da Expressão Gênica , Riboswitch , Bactérias/genética , Bactérias/metabolismo , Ligantes , Redes e Vias Metabólicas/genética , Motivos de Nucleotídeos , Transdução de Sinais
9.
Biochemistry ; 58(5): 401-410, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30081631

RESUMO

The ykkC RNA motif was a long-standing orphan riboswitch candidate that has recently been proposed to encompass at least five distinct bacterial riboswitch classes. Most ykkC RNAs belong to the subtype 1 group, which are guanidine-I riboswitches that regulate the expression of guanidine-specific carboxylase and transporter proteins. The remaining ykkC RNAs have been organized into at least four major categories called subtypes 2a-2d. Subtype 2a RNAs are riboswitches that sense the bacterial alarmone ppGpp and typically regulate amino acid biosynthesis genes. Subtype 2b riboswitches sense the purine biosynthetic intermediate PRPP and frequently partner with guanine riboswitches to regulate purine biosynthesis genes. In this study, we examined ykkC subtype 2c RNAs, which are found upstream of genes encoding hydrolase enzymes that cleave the phosphoanhydride linkages of nucleotide substrates. Subtype 2c representatives mostly recognize adenosine and cytidine 5'-diphosphate molecules in either their ribose or deoxyribose forms (ADP, dADP, CDP, and dCDP). Other nucleotide-containing compounds, especially nucleoside 5'-triphosphates, are strongly rejected by some members of this putative riboswitch class. High ligand concentrations in vivo are predicted to turn on expression of hydrolase enzymes, which presumably function to balance cellular nucleotide pools. These results further showcase the striking functional diversity derived from the structural scaffold shared among all ykkC motif RNAs, which has been adapted to sense at least five different types of natural ligands. Moreover, riboswitches for nucleoside diphosphates provide additional examples of the numerous partnerships observed between natural RNA aptamers and nucleotide-derived ligands, including metabolites, coenzymes, and signaling molecules.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Fosforribosil Pirofosfato/metabolismo , RNA Bacteriano/metabolismo , Riboswitch/genética , Proteínas de Bactérias/genética , Sequência de Bases , Enterobacteriaceae/metabolismo , Hidrolases/genética , Leuconostoc mesenteroides/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/genética
10.
Proc Natl Acad Sci U S A ; 115(23): 6052-6057, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784782

RESUMO

Riboswitches are noncoding portions of certain mRNAs that bind metabolite, coenzyme, signaling molecule, or inorganic ion ligands and regulate gene expression. Most known riboswitches sense derivatives of RNA monomers. This bias in ligand chemical composition is consistent with the hypothesis that widespread riboswitch classes first emerged during the RNA World, which is proposed to have existed before proteins were present. Here we report the discovery and biochemical validation of a natural riboswitch class that selectively binds guanosine tetraphosphate (ppGpp), a widespread signaling molecule and bacterial "alarmone" derived from the ribonucleotide GTP. Riboswitches for ppGpp are predicted to regulate genes involved in branched-chain amino acid biosynthesis and transport, as well as other gene classes that previously had not been implicated to be part of its signaling network. This newfound riboswitch-alarmone partnership supports the hypothesis that prominent RNA World signaling pathways have been retained by modern cells to control key biological processes.


Assuntos
Guanosina Tetrafosfato/fisiologia , Riboswitch/fisiologia , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Ligantes , Conformação de Ácido Nucleico , RNA Bacteriano , Ribonucleotídeos/metabolismo , Riboswitch/genética , Transdução de Sinais
11.
Elife ; 72018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29504937

RESUMO

Gene control systems sometimes interpret multiple signals to set the expression levels of the genes they regulate. In rare instances, ligand-binding riboswitch aptamers form tandem arrangements to approximate the function of specific two-input Boolean logic gates. Here, we report the discovery of riboswitch aptamers for phosphoribosyl pyrophosphate (PRPP) that naturally exist either in singlet arrangements, or occur in tandem with guanine aptamers. Tandem guanine-PRPP aptamers can bind the target ligands, either independently or in combination, to approximate the function expected for an IMPLY Boolean logic gate to regulate transcription of messenger RNAs for de novo purine biosynthesis in bacteria. The existence of sophisticated all-RNA regulatory systems that sense two ancient ribonucleotide derivatives to control synthesis of RNA molecules supports the hypothesis that RNA World organisms could have managed a complex metabolic state without the assistance of protein regulatory factors.


Assuntos
Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Regulação Bacteriana da Expressão Gênica , Helicobacter/genética , Helicobacter/metabolismo , Purinas/biossíntese , Riboswitch , Aptâmeros de Nucleotídeos/metabolismo
12.
RNA Biol ; 15(3): 371-378, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29106323

RESUMO

Five distinct riboswitch classes that regulate gene expression in response to the cofactor S-adenosylmethionine (SAM) or its metabolic breakdown product S-adenosylhomocysteine (SAH) have been reported previously. Collectively, these SAM- or SAH-sensing RNAs constitute the most abundant collection of riboswitches, and are found in nearly every major bacterial lineage. Here, we report a potential sixth member of this pervasive riboswitch family, called SAM-VI, which is predominantly found in Bifidobacterium species. SAM-VI aptamers selectively bind the cofactor SAM and strongly discriminate against SAH. The consensus sequence and structural model for SAM-VI share some features with the consensus model for the SAM-III riboswitch class, whose members are mainly found in lactic acid bacteria. However, there are sufficient differences between the two classes such that current bioinformatics methods separately cluster representatives of the two motifs. These findings highlight the abundance of RNA structures that can form to selectively recognize SAM, and showcase the ability of RNA to utilize diverse strategies to perform similar biological functions.


Assuntos
Bifidobacterium/genética , RNA Mensageiro/química , RNA Mensageiro/metabolismo , S-Adenosilmetionina/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Bifidobacterium/química , Bifidobacterium/metabolismo , Sítios de Ligação , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Riboswitch
13.
RNA Biol ; 15(3): 377-390, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29135333

RESUMO

Orphan riboswitch candidates are noncoding RNA motifs whose representatives are believed to function as genetic regulatory elements, but whose target ligands have yet to be identified. The study of certain orphans, particularly classes that have resisted experimental validation for many years, has led to the discovery of important biological pathways and processes once their ligands were identified. Previously, we highlighted details for four of the most common and intriguing orphan riboswitch candidates. This facilitated the validation of riboswitches for the signaling molecules c-di-AMP, ZTP, and ppGpp, the metal ion Mn2+, and the metabolites guanidine and PRPP. Such studies also yield useful linkages between the ligands sensed by the riboswitches and numerous biochemical pathways. In the current report, we describe the known characteristics of 30 distinct classes of orphan riboswitch candidates - some of which have remained unsolved for over a decade. We also discuss the prospects for uncovering novel biological insights via focused studies on these RNAs. Lastly, we make recommendations for experimental objectives along the path to finding ligands for these mysterious RNAs.


Assuntos
Bactérias/genética , RNA Mensageiro/química , Riboswitch , Leveduras/genética , Motivos de Aminoácidos , Aptâmeros de Nucleotídeos , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Fúngico/química
14.
Nucleic Acids Res ; 45(18): 10811-10823, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977401

RESUMO

The discovery of structured non-coding RNAs (ncRNAs) in bacteria can reveal new facets of biology and biochemistry. Comparative genomics analyses executed by powerful computer algorithms have successfully been used to uncover many novel bacterial ncRNA classes in recent years. However, this general search strategy favors the discovery of more common ncRNA classes, whereas progressively rarer classes are correspondingly more difficult to identify. In the current study, we confront this problem by devising several methods to select subsets of intergenic regions that can concentrate these rare RNA classes, thereby increasing the probability that comparative sequence analysis approaches will reveal their existence. By implementing these methods, we discovered 224 novel ncRNA classes, which include ROOL RNA, an RNA class averaging 581 nt and present in multiple phyla, several highly conserved and widespread ncRNA classes with properties that suggest sophisticated biochemical functions and a multitude of putative cis-regulatory RNA classes involved in a variety of biological processes. We expect that further research on these newly found RNA classes will reveal additional aspects of novel biology, and allow for greater insights into the biochemistry performed by ncRNAs.


Assuntos
RNA Bacteriano/química , RNA não Traduzido/química , Sequências Reguladoras de Ácido Ribonucleico , Integrons , Motivos de Nucleotídeos , Plasmídeos/genética , Transcrição Reversa
15.
RNA ; 23(7): 995-1011, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28396576

RESUMO

Riboswitches are commonly used by bacteria to detect a variety of metabolites and ions to regulate gene expression. To date, nearly 40 different classes of riboswitches have been discovered, experimentally validated, and modeled at atomic resolution in complex with their cognate ligands. The research findings produced since the first riboswitch validation reports in 2002 reveal that these noncoding RNA domains exploit many different structural features to create binding pockets that are extremely selective for their target ligands. Some riboswitch classes are very common and are present in bacteria from nearly all lineages, whereas others are exceedingly rare and appear in only a few species whose DNA has been sequenced. Presented herein are the consensus sequences, structural models, and phylogenetic distributions for all validated riboswitch classes. Based on our findings, we predict that there are potentially many thousands of distinct bacterial riboswitch classes remaining to be discovered, but that the rarity of individual undiscovered classes will make it increasingly difficult to find additional examples of this RNA-based sensory and gene control mechanism.


Assuntos
Bactérias/genética , RNA Bacteriano/química , Análise de Sequência de RNA/métodos , Sequência Consenso , Modelos Moleculares , Conformação de Ácido Nucleico , Filogenia , RNA Bacteriano/genética , RNA não Traduzido/química , Riboswitch
16.
Proc Natl Acad Sci U S A ; 114(11): E2077-E2085, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28265071

RESUMO

Riboswitches are RNAs that form complex, folded structures that selectively bind small molecules or ions. As with certain groups of protein enzymes and receptors, some riboswitch classes have evolved to change their ligand specificity. We developed a procedure to systematically analyze known riboswitch classes to find additional variants that have altered their ligand specificity. This approach uses multiple-sequence alignments, atomic-resolution structural information, and riboswitch gene associations. Among the discoveries are unique variants of the guanine riboswitch class that most tightly bind the nucleoside 2'-deoxyguanosine. In addition, we identified variants of the glycine riboswitch class that no longer recognize this amino acid, additional members of a rare flavin mononucleotide (FMN) variant class, and also variants of c-di-GMP-I and -II riboswitches that might recognize different bacterial signaling molecules. These findings further reveal the diverse molecular sensing capabilities of RNA, which highlights the potential for discovering a large number of additional natural riboswitch classes.


Assuntos
Biologia Computacional/métodos , RNA/química , RNA/genética , Riboswitch/genética , Sequência de Bases , Sítios de Ligação , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Desoxiguanosina/química , Glicina/química , Guanina/química , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico
18.
Biochemistry ; 56(2): 352-358, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28001368

RESUMO

Recently, it was determined that representatives of the riboswitch candidates called ykkC and ykkC-III directly bind free guanidine. Guanidine-binding ykkC motif RNAs, now renamed guanidine-I riboswitches, were demonstrated to commonly regulate the expression of genes encoding guanidine carboxylases, as well as others encoding guanidine efflux proteins such as EmrE and SugE. Likewise, genes encoding similar efflux proteins are associated with ykkC-III motif RNAs, which have now been renamed guanidine-III riboswitches. Prior to the validation of guanidine as the ligand for these newly established riboswitch classes, another RNA motif was discovered by comparative genomic analysis and termed mini-ykkC because of its small size and gene associations similar to those of the original ykkC motif. It was hypothesized that these distinct RNA structures might respond to the same ligand. However, the small size and repetitive nature of mini-ykkC RNAs suggested that it might respond to ligand via the action of a protein factor. Herein, we demonstrate that, despite its extremely simple architecture, mini-ykkC motif RNAs constitute a distinct class of guanidine-sensing RNAs, called guanidine-II riboswitches. Surprisingly, each of the two stem-loop structures that comprise the mini-ykkC motif appears to directly bind free guanidine in a cooperative manner. These findings reveal that bacteria make extensive use of diverse guanidine-responsive riboswitches to overcome the toxic effects of this compound.


Assuntos
Cianobactérias/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Guanidinas/farmacologia , RNA Bacteriano/química , Riboswitch , Antiporters/genética , Antiporters/metabolismo , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Biologia Computacional , Cianobactérias/genética , Cianobactérias/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanidinas/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Ligantes , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
19.
Biochemistry ; 56(2): 359-363, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28001372

RESUMO

Recently, it was determined that representatives of the riboswitch candidates called ykkC and mini-ykkC directly bind free guanidine. These riboswitches regulate the expression of genes whose protein products are implicated in overcoming the toxic effects of this ligand. Thus, the relevant ykkC motif and mini-ykkC motif RNAs have been classified as guanidine-I and guanidine-II riboswitch RNAs, respectively. Moreover, we had previously noted that a third candidate riboswitch class, called ykkC-III, was associated with a distribution of genes similar to those of the other two motifs. Therefore, it was predicted that ykkC-III motif RNAs would sense and respond to the same ligand. In this report, we present biochemical data supporting the hypothesis that ykkC-III RNAs represent a third class of guanidine-sensing RNAs called guanidine-III riboswitches. Members of the guanidine-III riboswitch class bind their ligand with an affinity similar to that observed for members of the other two classes. Notably, there are some sequence similarities between guanidine-II and guanidine-III riboswitches. However, the characteristics of ligand discrimination by guanidine-III RNAs are different from those of the other guanidine-binding motifs, suggesting that the binding pockets have distinct features among the three riboswitch classes.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Guanidinas/farmacologia , Nocardia/efeitos dos fármacos , RNA Bacteriano/química , Riboswitch , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Biologia Computacional , Guanidinas/metabolismo , Legionella pneumophila/efeitos dos fármacos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Ligantes , Mycobacterium kansasii/efeitos dos fármacos , Mycobacterium kansasii/genética , Mycobacterium kansasii/metabolismo , Nocardia/genética , Nocardia/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
20.
Mol Cell ; 65(2): 220-230, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989440

RESUMO

The guanidyl moiety is a component of fundamental metabolites, including the amino acid arginine, the energy carrier creatine, and the nucleobase guanine. Curiously, reports regarding the importance of free guanidine in biology are sparse, and no biological receptors that specifically recognize this compound have been previously identified. We report that many members of the ykkC motif RNA, the longest unresolved riboswitch candidate, naturally sense and respond to guanidine. This RNA is found throughout much of the bacterial domain of life, where it commonly controls the expression of proteins annotated as urea carboxylases and multidrug efflux pumps. Our analyses reveal that these proteins likely function as guanidine carboxylases and guanidine transporters, respectively. Furthermore, we demonstrate that bacteria are capable of endogenously producing guanidine. These and related findings demonstrate that free guanidine is a biologically relevant compound, and several gene families that can alleviate guanidine toxicity exist.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Guanidina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Riboswitch , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA