Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(34): eadg3247, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611094

RESUMO

Does warmth from hydrothermal springs play a vital role in the biology and ecology of abyssal animals? Deep off central California, thousands of octopus (Muusoctopus robustus) migrate through cold dark waters to hydrothermal springs near an extinct volcano to mate, nest, and die, forming the largest known aggregation of octopus on Earth. Warmth from the springs plays a key role by raising metabolic rates, speeding embryonic development, and presumably increasing reproductive success; we show that brood times for females are ~1.8 years, far faster than expected for abyssal octopods. Using a high-resolution subsea mapping system, we created landscape-scale maps and image mosaics that reveal 6000 octopus in a 2.5-ha area. Because octopuses die after reproducing, hydrothermal springs indirectly provide a food supplement to the local energy budget. Although localized deep-sea heat sources may be essential to octopuses and other warm-tolerant species, most of these unique and often cryptic habitats remain undiscovered and unexplored.


Assuntos
Octopodiformes , Animais , Feminino , Suplementos Nutricionais , Planeta Terra , Ecologia , Incubadoras , Água
2.
Nature ; 583(7814): 78-82, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32494011

RESUMO

Many animals build complex structures to aid in their survival, but very few are built exclusively from materials that animals create 1,2. In the midwaters of the ocean, mucoid structures are readily secreted by numerous animals, and serve many vital functions3,4. However, little is known about these mucoid structures owing to the challenges of observing them in the deep sea. Among these mucoid forms, the 'houses' of larvaceans are marvels of nature5, and in the ocean twilight zone giant larvaceans secrete and build mucus filtering structures that can reach diameters of more than 1 m6. Here we describe in situ laser-imaging technology7 that reconstructs three-dimensional models of mucus forms. The models provide high-resolution views of giant larvacean houses and elucidate the role that house structure has in food capture and predator avoidance. Now that tools exist to study mucus structures found throughout the ocean, we can shed light on some of nature's most complex forms.


Assuntos
Organismos Aquáticos/metabolismo , Muco/metabolismo , Urocordados/anatomia & histologia , Urocordados/metabolismo , Animais , Ciclo do Carbono , Comportamento Alimentar , Cadeia Alimentar , Imageamento Tridimensional/instrumentação , Lasers , Conformação Molecular , Muco/química , Oceanos e Mares , Comportamento Predatório , Água do Mar
3.
Sci Adv ; 3(8): e1700715, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28835922

RESUMO

Plastic waste is a pervasive feature of marine environments, yet little is empirically known about the biological and physical processes that transport plastics through marine ecosystems. To address this need, we conducted in situ feeding studies of microplastic particles (10 to 600 µm in diameter) with the giant larvacean Bathochordaeus stygius. Larvaceans are abundant components of global zooplankton assemblages, regularly build mucus "houses" to filter particulate matter from the surrounding water, and later abandon these structures when clogged. By conducting in situ feeding experiments with remotely operated vehicles, we show that giant larvaceans are able to filter a range of microplastic particles from the water column, ingest, and then package microplastics into their fecal pellets. Microplastics also readily affix to their houses, which have been shown to sink quickly to the seafloor and deliver pulses of carbon to benthic ecosystems. Thus, giant larvaceans can contribute to the vertical flux of microplastics through the rapid sinking of fecal pellets and discarded houses. Larvaceans, and potentially other abundant pelagic filter feeders, may thus comprise a novel biological transport mechanism delivering microplastics from surface waters, through the water column, and to the seafloor. Our findings necessitate the development of tools and sampling methodologies to quantify concentrations and identify environmental microplastics throughout the water column.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Plásticos , Água do Mar , Resíduos , Poluentes Químicos da Água
4.
Sci Adv ; 3(5): e1602374, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28508058

RESUMO

To accurately assess the impacts of climate change on our planet, modeling of oceanic systems and understanding how atmospheric carbon is transported from surface waters to the deep benthos are required. The biological pump drives the transport of carbon through the ocean's depths, and the rates at which carbon is removed and sequestered are often dependent on the grazing abilities of surface and midwater organisms. Some of the most effective and abundant midwater grazers are filter-feeding invertebrates. Although the impact of smaller, near-surface filter feeders is generally known, efforts to quantify the impact of deeper filter feeders, such as giant larvaceans, have been unsuccessful. Giant larvaceans occupy the upper 400 m of the water column, where they build complex mucus filtering structures that reach diameters greater than 1 m. Because of the fragility of these structures, direct measurements of filtration rates require in situ methods. Hence, we developed DeepPIV, an instrument deployed from a remotely operated vehicle that enables the direct measurement of in situ filtration rates. The rates measured for giant larvaceans exceed those of any other zooplankton filter feeder. Given these filtration rates and abundance data from a 22-year time series, the grazing impact of giant larvaceans far exceeds previous estimates, with the potential for processing their 200-m principal depth range in Monterey Bay in as little as 13 days. Technologies such as DeepPIV will enable more accurate assessments of the long-term removal of atmospheric carbon by deep-water biota.

5.
Proc Natl Acad Sci U S A ; 110(49): 19838-41, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24218565

RESUMO

The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.


Assuntos
Biota/fisiologia , Mudança Climática/história , Cadeia Alimentar , Carbono/análise , Clorofila/análise , Clorofila A , Mudança Climática/estatística & dados numéricos , Fluorescência , História do Século XX , História do Século XXI , Oceano Pacífico , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA