Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Biol Lett ; 20(1): 20230461, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166416

RESUMO

It has long been hypothesized that a species that is relatively easy to catch by predators may face selection to resemble a species that is harder to catch. Several experiments using avian predators have since supported this 'evasive mimicry' hypothesis. However, the sudden movement of artificial evasive prey in each of the above experiments may have startled the predators, generating an avoidance response unrelated to difficulty of capture. Additionally in the above experiments the catchability of prey was all or nothing, while in nature predators may occasionally catch evasive prey or fail to catch slower species, which might inhibit learning. Here, using mantids as predators, we conducted an experimental test of the evasive mimicry hypothesis that circumvents these limitations, using live painted calyptrate flies with modified evasive capabilities as prey. We found that mantids readily learned to avoid pursuing the more evasive prey types. Warning signals based on evasiveness and their associated mimicry may be widespread phenomena in nature. These findings not only further support its plausibility but demonstrate that even arthropod predators can select for it.


Assuntos
Artrópodes , Mimetismo Biológico , Animais , Comportamento Predatório/fisiologia , Evolução Biológica , Modelos Biológicos , Aprendizagem
2.
R Soc Open Sci ; 10(6): 230157, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351497

RESUMO

Signal detection theory (SDT) has been widely applied to identify the optimal discriminative decisions of receivers under uncertainty. However, the approach assumes that decision-makers immediately adopt the appropriate acceptance threshold, even though the optimal response must often be learned. Here we recast the classical normal-normal (and power-law) signal detection model as a contextual multi-armed bandit (CMAB). Thus, rather than starting with complete information, decision-makers must infer how the magnitude of a continuous cue is related to the probability that a signaller is desirable, while simultaneously seeking to exploit the information they acquire. We explain how various CMAB heuristics resolve the trade-off between better estimating the underlying relationship and exploiting it. Next, we determined how naive human volunteers resolve signal detection problems with a continuous cue. As anticipated, a model of choice (accept/reject) that assumed volunteers immediately adopted the SDT-predicted acceptance threshold did not predict volunteer behaviour well. The Softmax rule for solving CMABs, with choices based on a logistic function of the expected payoffs, best explained the decisions of our volunteers but a simple midpoint algorithm also predicted decisions well under some conditions. CMABs offer principled parametric solutions to solving many classical SDT problems when decision-makers start with incomplete information.

3.
J Evol Biol ; 36(7): 975-991, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37363877

RESUMO

Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such "defence portfolios" that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.


Assuntos
Ecologia , Comportamento Predatório , Animais , Fenótipo
4.
PLoS Genet ; 19(5): e1010753, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216404

RESUMO

Males have finite resources to spend on reproduction. Thus, males rely on a 'time investment strategy' to maximize their reproductive success. For example, male Drosophila melanogaster extends their mating duration when surrounded by conditions enriched with rivals. Here we report a different form of behavioral plasticity whereby male fruit flies exhibit a shortened duration of mating when they are sexually experienced; we refer to this plasticity as 'shorter-mating-duration (SMD)'. SMD is a plastic behavior and requires sexually dimorphic taste neurons. We identified several neurons in the male foreleg and midleg that express specific sugar and pheromone receptors. Using a cost-benefit model and behavioral experiments, we further show that SMD behavior exhibits adaptive behavioral plasticity in male flies. Thus, our study delineates the molecular and cellular basis of the sensory inputs required for SMD; this represents a plastic interval timing behavior that could serve as a model system to study how multisensory inputs converge to modify interval timing behavior for improved adaptation.


Assuntos
Drosophila melanogaster , Feromônios , Animais , Masculino , Drosophila melanogaster/genética , Paladar , Comportamento Sexual Animal/fisiologia , Reprodução , Drosophila
5.
Science ; 379(6637): 1136-1140, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927015

RESUMO

The initial evolution of warning signals in unprofitable prey, termed aposematism, is often seen as a paradox because any new conspicuous mutant would be easier to detect than its cryptic conspecifics and not readily recognized by naïve predators as defended. One possibility is that permanent aposematism first evolved through species using hidden warning signals, which are only exposed to would-be predators on encounter. Here, we present a large-scale analysis of evolutionary transitions in amphibian antipredation coloration and demonstrate that the evolutionary transition from camouflage to aposematism is rarely direct but tends to involve an intermediary stage, namely cryptic species that facultatively reveal conspicuous coloration. Accounting for this intermediate step can resolve the paradox and thereby advance our understanding of the evolution of aposematism.


Assuntos
Evolução Biológica , Mimetismo Biológico , Comportamento Predatório , Animais , Anfíbios
6.
Proc Biol Sci ; 288(1955): 20210866, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34315261

RESUMO

Flash behaviour is widespread in the animal kingdom and describes the exposure of a hidden conspicuous signal as an animal flees from predators. Recent studies have demonstrated that the signal can enhance survivorship by leading pursuing predators into assuming the flasher is also conspicuous at rest. Naturally, this illusion will work best if potential predators are ignorant of the flasher's resting appearance, which could be achieved if the prey flees while the predator is relatively far away. To test this hypothesis, we compared the survival of flashing and non-flashing computer-generated prey with different flight initiation distances (FIDs) using humans as model predators. This experiment found that flash displays confer a survivorship advantage only to those prey with a long FID. A complementary phylogenetic analysis of Australian bird species supports these results: after controlling for body size, species with putative flashing signals had longer FIDs than those without. Species with putative flashing signals also tended to be larger, as demonstrated in other taxa. The anti-predation benefit of flash displays is therefore related to the nature of escape behaviour. Since birds with hidden signals tend to flee at a distance, the flash display here is unlikely to function by startling would-be predators.


Assuntos
Aves , Comportamento Predatório , Animais , Austrália , Tamanho Corporal , Humanos , Filogenia
7.
Am Nat ; 196(5): E127-E144, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33064589

RESUMO

AbstractThe mimicry of one species by another provides one of the most celebrated examples of evolution by natural selection. Edible Batesian mimics deceive predators into believing they may be defended, whereas defended Müllerian mimics have evolved a shared warning signal, more rapidly educating predators to avoid them. However, it may benefit hungry predators to attack defended prey, while the benefits of learning about unfamiliar prey depends on the future value of this information. Previous energetic state-dependent models of predator foraging behavior have assumed complete knowledge, while informational state-dependent models have assumed fixed levels of hunger. Here, we identify the optimal decision rules of predators accounting for both energetic and informational states. We show that the nature of mimicry is qualitatively and quantitatively affected by both sources of state dependence. Associative learning weakens the extent of parasitic mimicry by edible prey because naive predators often attack defended models. More importantly, mimicry among equally highly defended prey may be parasitic or mutualistic depending on the ecological context (e.g., the source of mimics and the abundance of alternative prey). Finally, mimicry by prey with intermediate defenses corresponds to Batesian or Müllerian mimicry depending on whether the mimic is profitable to attack by hungry predators, but it is not a special case of mimicry.


Assuntos
Mimetismo Biológico , Tomada de Decisões , Comportamento Predatório , Animais , Aprendizagem por Associação , Seleção Genética
8.
Proc Biol Sci ; 287(1934): 20201894, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900312

RESUMO

Some camouflaged animals hide colour signals and display them only transiently. These hidden colour signals are often conspicuous and are used as a secondary defence to warn or startle predators (deimatic displays) and/or to confuse them (flash displays). The hidden signals used in these displays frequently resemble typical aposematic signals, so it is possible that prey with hidden signals have evolved to employ colour patterns of a form that predators have previously learned to associate with unprofitability. Here, we tested this hypothesis by conducting two experiments that examined the effect of predator avoidance learning on the efficacy of deimatic and flash displays. We found that the survival benefits of both deimatic and flash displays were substantially higher against predators that had previously learned to associate the hidden colours with unprofitability than against naive predators. These findings help explain the phenological patterns we found in 1568 macro-lepidopteran species on three continents: species with hidden signals tend to occur later in the season than species without hidden signals.


Assuntos
Aprendizagem da Esquiva , Pigmentação , Comportamento Predatório , Animais , Cor , Sinais (Psicologia) , Estações do Ano
9.
Am Nat ; 194(1): 28-37, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31251647

RESUMO

While there have been a number of recent advances in our understanding of the evolution of animal color patterns, much of this work has focused on color patterns that are constantly displayed. However, some animals hide functional color signals and display them only transiently through behavioral displays. These displays are widely employed as a secondary defense following detection when fleeing (flash display) or when stationary (deimatic display). Yet if displays of hidden colors are so effective in deterring predation, why have not all species evolved them? An earlier study suggested that the hidden antipredatory color signals in insects are more likely to have evolved in species with large size because either (or both) (i) large cryptic prey are more frequently detected and pursued or (ii) hidden color signals in large prey are more effective in deterring predation than in small prey. These arguments should apply universally to any prey that use hidden signals, so the association between large size and hidden contrasting color signals should be evident across diverse groups of prey. In this study, we tested this prediction in five different groups of insects. Using phylogenetically controlled analysis to elucidate the relationship between body size and color contrast between forewings and hind wings, we found evidence for the predicted size-color contrast associations in four different groups of insects, namely, Orthoptera, Phasmatidae, Mantidae, and Saturniidae, but not in Sphingidae. Collectively, our study indicates that body size plays an important role in explaining variation in the evolution of hidden contrasting color signals in insects.


Assuntos
Comportamento Animal , Evolução Biológica , Tamanho Corporal , Insetos/genética , Pigmentação/genética , Animais , Feminino , Masculino
10.
Elife ; 82019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31021317

RESUMO

Warning signals displayed by defended prey are mimicked by both mutualistic (Müllerian) and parasitic (Batesian) species. Yet mimicry is often imperfect: why does selection not improve mimicry? Predators create selection on warning signals, so predator psychology is crucial to understanding mimicry. We conducted experiments where humans acted as predators in a virtual ecosystem to ask how prey diversity affects the way that predators categorize prey phenotypes as profitable or unprofitable. The phenotypic diversity of prey communities strongly affected predator categorization. Higher diversity increased the likelihood that predators would use a 'key' trait to form broad categories, even if it meant committing errors. Broad categorization favors the evolution of mimicry. Both species richness and evenness contributed significantly to this effect. This lets us view the behavioral and evolutionary processes leading to mimicry in light of classical community ecology. Broad categorization by receivers is also likely to affect other forms of signaling.


Assuntos
Evolução Biológica , Mimetismo Biológico , Variação Biológica da População , Comportamento Predatório , Simbiose , Animais , Ecossistema , Voluntários Saudáveis , Humanos , Modelos Biológicos , Jogos de Vídeo
11.
Proc Natl Acad Sci U S A ; 116(3): 929-933, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30509987

RESUMO

Climate-induced changes in spatial and temporal occurrence of species, as well as species traits such as body size, each have the potential to decouple symbiotic relationships. Past work has focused primarily on direct interactions, particularly those between predators and prey and between plants and pollinators, but studies have rarely demonstrated significant fitness costs to the interacting, coevolving organisms. Here, we demonstrate that changing phenological synchrony in the latter part of the 20th century has different fitness outcomes for the actors within a Batesian mimicry complex, where predators learn to differentiate harmful "model" organisms (stinging Hymenoptera) from harmless "mimics" (hoverflies, Diptera: Syrphidae). We define the mimetic relationships between 2,352 pairs of stinging Hymenoptera and their Syrphidae mimics based on a large-scale citizen science project and demonstrate that there is no relationship between the phenological shifts of models and their mimics. Using computer game-based experiments, we confirm that the fitness of models, mimics, and predators differs among phenological scenarios, creating a phenologically antagonistic system. Finally, we show that climate change is increasing the proportion of mimetic interactions in which models occur first and reducing mimic-first and random patterns of occurrence, potentially leading to complex fitness costs and benefits across all three actors. Our results provide strong evidence for an overlooked example of fitness consequences from changing phenological synchrony.


Assuntos
Ciências Biocomportamentais , Mimetismo Biológico/fisiologia , Mudança Climática , Dípteros/fisiologia , Vespas , Animais
12.
Ecol Evol ; 7(17): 7117-7129, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28904788

RESUMO

The study of island fauna has greatly informed our understanding of the evolution of diversity. We here examine the phylogenetics, biogeography, and diversification of the damselfly genera Nesobasis and Melanesobasis, endemic to the Fiji Islands, to explore mechanisms of speciation in these highly speciose groups. Using mitochondrial (COI, 12S) and nuclear (ITS) replicons, we recovered garli-part maximum likelihood and mrbayes Bayesian phylogenetic hypotheses for 26 species of Nesobasis and eight species/subspecies of Melanesobasis. Biogeographical patterns were explored using lagrange and bayes-lagrange and interpreted through beast relaxed clock dating analyses. We found that Nesobasis and Melanesobasis have radiated throughout Fiji, but are not sister groups. For Nesobasis, while the two largest islands of the archipelago-Viti Levu and Vanua Levu-currently host two distinct species assemblages, they do not represent phylogenetic clades; of the three major groupings each contains some Viti Levu and some Vanua Levu species, suggesting independent colonization events across the archipelago. Our beast analysis suggests a high level of species diversification around 2-6 Ma. Our ancestral area reconstruction (rasp-lagrange) suggests that both dispersal and vicariance events contributed to the evolution of diversity. We thus conclude that the evolutionary history of Nesobasis and Melanesobasis is complex; while inter-island dispersal followed by speciation (i.e., peripatry) has contributed to diversity, speciation within islands appears to have taken place a number of times as well. This speciation has taken place relatively recently and appears to be driven more by reproductive isolation than by ecological differentiation: while species in Nesobasis are morphologically distinct from one another, they are ecologically very similar, and currently are found to exist sympatrically throughout the islands on which they are distributed. We consider the potential for allopatric speciation within islands, as well as the influence of parasitic endosymbionts, to explain the high rates of speciation in these damselflies.

13.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855366

RESUMO

Many cryptic prey have also evolved hidden contrasting colour signals which are displayed to would-be predators. Given that these hidden contrasting signals may confer additional survival benefits to the prey by startling/intimidating predators, it is unclear why they have evolved in some species, but not in others. Here, we have conducted a comparative phylogenetic analysis of the evolution of colour traits in the family Erebidae (Lepidoptera), and found that the hidden contrasting colour signals are more likely to be found in larger species. To understand why this relationship occurs, we present a general mathematical model, demonstrating that selection for a secondary defence such as deimatic display will be stronger in large species when (i) the primary defence (crypsis) is likely to fail as its body size increases and/or (ii) the secondary defence is more effective in large prey. To test the model assumptions, we conducted behavioural experiments using a robotic moth which revealed that survivorship advantages were higher against wild birds when the moth has contrasting hindwings and large size. Collectively, our results suggest that the evolutionary association between large size and hidden contrasting signals has been driven by a combination of the need for a back-up defence and its efficacy.


Assuntos
Evolução Biológica , Tamanho Corporal , Mariposas/fisiologia , Pigmentação , Animais , Aves , Cor , Filogenia , Comportamento Predatório
14.
Science ; 357(6350)2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28774901

RESUMO

Coloration mediates the relationship between an organism and its environment in important ways, including social signaling, antipredator defenses, parasitic exploitation, thermoregulation, and protection from ultraviolet light, microbes, and abrasion. Methodological breakthroughs are accelerating knowledge of the processes underlying both the production of animal coloration and its perception, experiments are advancing understanding of mechanism and function, and measurements of color collected noninvasively and at a global scale are opening windows to evolutionary dynamics more generally. Here we provide a roadmap of these advances and identify hitherto unrecognized challenges for this multi- and interdisciplinary field.


Assuntos
Percepção de Cores/fisiologia , Visão de Cores/fisiologia , Pigmentação/fisiologia , Pigmentos Biológicos/biossíntese , Animais , Evolução Biológica , Percepção de Cores/genética , Visão de Cores/genética , Células Fotorreceptoras/fisiologia , Pigmentação/genética , Pigmentos Biológicos/genética , Reprodução
15.
PLoS One ; 12(6): e0179483, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662042

RESUMO

Aposematism is an evolved, cross-species association between a preys' unprofitability and the presence of conspicuous signals. Avian predators have been widely employed to understand the evolution of these warning signals However, insect predators are abundant, diverse, and highly visual foragers that have been shown to be capable of learned aversion. Therefore, it is likely that their behaviour also shapes the nature of anti-predator traits. In this study, we evaluated the rates of attack of a community (13 species) of mature adult dragonflies (Odonata) on artificial prey of varying size (2.5-31 mm lengthwise) and colour pattern (black, black/yellow striped). The relative attack rates of dragonflies on prey increased as prey size decreased, but there was no evidence that the attack rates by dragonflies were affected by prey colour pattern and no evidence for an interaction between colour pattern and size. To investigate prey selection by specific predator species under field conditions, we compared the time to attack distributions of black-painted prey presented to two common dragonflies: Leucorrhinia intacta and the larger, Libellula pulchella. We found that the two dragonfly species, as well as the two sexes, had different foraging responses. L. pulchella was more likely to attack larger prey, and females of both species more likely to attack prey than males. Collectively, our results indicate that dragonflies are highly size selective. However, while the nature of this selectivity varies among dragonfly species, there is little evidence that classic black/yellow warning signals deter attack by these aerial invertebrate predators.


Assuntos
Cor , Odonatos/fisiologia , Comportamento Predatório , Animais
16.
Philos Trans R Soc Lond B Biol Sci ; 372(1724)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28533457

RESUMO

We consider why imperfect deceptive mimics can persist when it appears to be in the predator's interest to discriminate finely between mimics and their models. One theory is that a receiver will accept being duped if the model and mimic overlap in appearance and the relative costs of attacking the model are high. However, a more fundamental explanation for the difficulty of discrimination is not based on perceptual uncertainty, but simply based on a lack of information. In particular, predators in the process of learning may cease sampling imperfect mimics entirely because the immediate pay-off and future value of information is low, allowing such mimics to persist. This outcome will be particularly likely when the model is relatively costly to attack and/or the discriminative rules the predator has to learn are complex. Information limitations neatly explain why predators tend to adopt discriminative rules based on single traits (such as stripe colour), rather than on combinations of traits (such as stripe order). They also explain why predators utilize certain salient discriminative traits while ignoring equally informative ones (a phenomenon known as overshadowing), and why imperfect mimics may be more common in phenotypically diverse prey communities.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.


Assuntos
Evolução Biológica , Mimetismo Biológico , Cor , Comportamento Predatório , Animais , Aprendizagem , Fenótipo
17.
Am Nat ; 189(3): 267-282, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28221836

RESUMO

Understanding the conditions under which moderately defended prey evolve to resemble better-defended prey and whether this mimicry is parasitic (quasi-Batesian) or mutualistic (Müllerian) is central to our understanding of warning signals. Models of predator learning generally predict quasi-Batesian relationships. However, predators' attack decisions are based not only on learning alone but also on the potential future rewards. We identify the optimal sampling strategy of predators capable of classifying prey into different profitability categories and contrast the implications of these rules for mimicry evolution with a classical Pavlovian model based on conditioning. In both cases, the presence of moderately unprofitable mimics causes an increase in overall consumption. However, in the case of the optimal sampling strategy, this increase in consumption is typically outweighed by the increase in overall density of prey sharing the model appearance (a dilution effect), causing a decrease in mortality. It suggests that if predators forage efficiently to maximize their long-term payoff, genuine quasi-Batesian mimicry should be rare, which may explain the scarcity of evidence for it in nature. Nevertheless, we show that when moderately defended mimics are profitable to attack by hungry predators, then they can be parasitic on their models, just as classical Batesian mimics are.


Assuntos
Evolução Biológica , Mimetismo Biológico , Comportamento Predatório , Simbiose , Animais , Aprendizagem , Modelos Biológicos
18.
PLoS One ; 11(3): e0151243, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986565

RESUMO

Recent theory predicts that males should choose social environments that maximize their relative attractiveness to females by preferentially associating with less attractive rivals, so as to enhance their mating success. Using the Trinidadian guppy (Poecilia reticulata), a highly social species, we tested for non-random social associations among males in mixed-sex groups based on two phenotypic traits (body length and coloration) that predict relative sexual attractiveness to females and sexual (sperm) competitiveness. Based on a well-replicated laboratory dichotomous-choice test of social group preference, we could not reject the null hypothesis that focal males chose randomly between a mixed-sex group that comprised a female and a rival male that was less sexually attractive than themselves and another mixed-sex group containing a sexually more attractive male. The same conclusion was reached when females were absent from the two groups. As might be expected from these laboratory findings, free-ranging males in the field were not assorted by either body length or colour in mixed-sex shoals. The apparent lack of an evolved and expressed preference in wild male guppies from our study population to form social associations with other males based on their relative sexual attractiveness and competitiveness might be due to the fission-fusion dynamics of guppy shoals in nature. Such social dynamics likely places constraints on the formation of stable phenotype-based social associations among males. This possibility is supported by a simulation model which assumes group departure rules based on relative body size and coloration in males.


Assuntos
Tamanho Corporal/fisiologia , Preferência de Acasalamento Animal/fisiologia , Poecilia/fisiologia , Pigmentação da Pele/fisiologia , Comportamento Social , Algoritmos , Análise de Variância , Animais , Comportamento de Escolha/fisiologia , Feminino , Masculino , Modelos Biológicos , Meio Social
19.
Curr Biol ; 26(2): R52-R54, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26811884

RESUMO

Skelhorn et al. introduce eyespots the circular markings resembling vertebrate eyes found on many animals.


Assuntos
Evolução Biológica , Borboletas , Olho , Pigmentação/fisiologia , Comportamento Predatório/fisiologia , Asas de Animais/fisiologia , Animais , Humanos
20.
Am Nat ; 186(3): 321-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26655351

RESUMO

Predators must use the appearance of their prey to decide whether it is likely to be defended. Most theory assumes that predators have completed learning about prey appearance, yet we do not understand how predators learn which aspects of appearance to use for classifying prey. If sampling prey can be risky, predators might forgo opportunities to learn about the relationship between prey appearance and defense. Using Bayesian inference and dynamic programming, we modeled how the immediate risks and future rewards of learning about prey appearance influence how predators learn. In addition, we explored how variation in predator learning affects the evolution of mimicry, which occurs when two prey evolve to share a common signal to predators. We found that when learning about prey with distinct appearances was expensive, optimal predators tended to lump them into the same category or exhibit an unwillingness to sample at all (neophobia). This resulted in a reduction in selection for defensive mimicry. However, the same predator behavior favored the evolution of aggressive mimicry, because in that case, mimics benefited from being sampled. When prey were very rare and costs of sampling them were high, predators exhibited neophobia, refusing to attack. This behavior could forestall the evolution of mimicry and instead select for polymorphism.


Assuntos
Evolução Biológica , Mimetismo Biológico , Comportamento Predatório , Animais , Teorema de Bayes , Comportamento Animal , Aprendizagem , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA