Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 3566, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476169

RESUMO

Using computational and theoretical approaches, we investigate the snap-through transition of buckled graphene membranes. Our main interest is related to the possibility of using the buckled membrane as a plate of capacitor with memory (memcapacitor). For this purpose, we performed molecular-dynamics (MD) simulations and elasticity theory calculations of the up-to-down and down-to-up snap-through transitions for membranes of several sizes. We have obtained expressions for the threshold switching forces for both up-to-down and down-to-up transitions. Moreover, the up-to-down threshold switching force was calculated using the density functional theory (DFT). Our DFT results are in general agreement with MD and analytical theory findings. Our systematic approach can be used for the description of other structures, including nanomechanical and biological ones, experiencing the snap-through transition.

2.
Sci Rep ; 6: 26155, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27199243

RESUMO

Frequency generators are widely used in electronics. Here, we report the design and experimental realization of a memristive frequency generator employing a unique combination of only digital logic gates, a single-supply voltage and a realistic thresholdtype memristive device. In our circuit, the oscillator frequency and duty cycle are defined by the switching characteristics of the memristive device and external resistors. We demonstrate the circuit operation both experimentally, using a memristor emulator, and theoretically, using a model memristive device with threshold. Importantly, nanoscale realizations of memristive devices offer small-size alternatives to conventional quartz-based oscillators. In addition, the suggested approach can be used for mimicking some cyclic (Sisyphus) processes in nature, such as "dripping ants" or drops from leaky faucets.

3.
Nano Lett ; 16(3): 1614-9, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26866446

RESUMO

Quantum mechanical effects induced by the miniaturization of complementary metal-oxide-semiconductor (CMOS) technology hamper the performance and scalability prospects of field-effect transistors. However, those quantum effects, such as tunneling and coherence, can be harnessed to use existing CMOS technology for quantum information processing. Here, we report the observation of coherent charge oscillations in a double quantum dot formed in a silicon nanowire transistor detected via its dispersive interaction with a radio frequency resonant circuit coupled via the gate. Differential capacitance changes at the interdot charge transitions allow us to monitor the state of the system in the strong-driving regime where we observe the emergence of Landau-Zener-Stückelberg-Majorana interference on the phase response of the resonator. A theoretical analysis of the dispersive signal demonstrates that quantum and tunneling capacitance changes must be included to describe the qubit-resonator interaction. Furthermore, a Fourier analysis of the interference pattern reveals a charge coherence time, T2 ≈ 100 ps. Our results demonstrate charge coherent control and readout in a simple silicon transistor and open up the possibility to implement charge and spin qubits in existing CMOS technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA