Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37962836

RESUMO

Nanomedicine holds promise for potentiating drug combination therapies. Increasing (pre)clinical evidence is available exemplifying the value of co-formulating and co-delivering different drugs in modular nanocarriers. Taxanes like paclitaxel (PTX) are widely used anticancer agents, and commonly combined with corticosteroids like dexamethasone (DEX), which besides for suppressing inflammation and infusion reactions, are increasingly explored for modulating the tumor microenvironment towards enhanced nano-chemotherapy delivery and efficacy. We here set out to develop a size- and release rate-tunable polymeric micelle platform for co-delivery of taxanes and corticosteroids. We synthesized amphiphilic mPEG-b-p(HPMAm-Bz) block copolymers of various molecular weights and used them to prepare PTX and DEX single- and double-loaded micelles of different sizes. Both drugs could be efficiently co-encapsulated, and systematic comparison between single- and co-loaded formulations demonstrated comparable physicochemical properties, encapsulation efficiencies, and release profiles. Larger micelles showed slower drug release, and DEX release was always faster than PTX. The versatility of the platform was exemplified by co-encapsulating two additional taxane-corticosteroid combinations, demonstrating that drug hydrophobicity and molecular weight are key properties that strongly contribute to drug retention in micelles. Altogether, our work shows that mPEG-b-p(HPMAm-Bz) polymeric micelles serve as a tunable and versatile nanoparticle platform for controlled co-delivery of taxanes and corticosteroids, thereby paving the way for using these micelles as a modular carrier for multidrug nanomedicine.

2.
Biomacromolecules ; 24(10): 4444-4453, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36753733

RESUMO

Polymeric micelles are among the most extensively used drug delivery systems. Key properties of micelles, such as size, size distribution, drug loading, and drug release kinetics, are crucial for proper therapeutic performance. Whether polymers from more controlled polymerization methods produce micelles with more favorable properties remains elusive. To address this question, we synthesized methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl)methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers of three different comparable molecular weights (∼9, 13, and 20 kDa), via both conventional free radical (FR) and reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were subsequently employed to prepare empty and paclitaxel-loaded micelles. While FR polymers had relatively high dispersities (D ∼ 1.5-1.7) compared to their RAFT counterparts (D ∼ 1.1-1.3), they formed micelles with similar pharmaceutical properties (e.g., size, size distribution, critical micelle concentration, cytotoxicity, and drug loading and retention). Our findings suggest that pharmaceutical properties of mPEG-b-p(HPMAm-Bz) micelles do not depend on the synthesis route of their constituent polymers.


Assuntos
Elétrons , Micelas , Polimerização , Polietilenoglicóis , Polímeros , Portadores de Fármacos
3.
Lab Chip ; 23(1): 182-194, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36448477

RESUMO

Continuous flow manufacturing (CFM) has shown remarkable advantages in the industrial-scale production of drug-loaded nanomedicines, including mRNA-based COVID-19 vaccines. Thus far, CFM research in nanomedicine has mainly focused on the initial particle formation step, while post-formation production steps are hardly ever integrated. The opportunity to implement in-line quality control of critical quality attributes merits closer investigation. Here, we designed and tested a CFM setup for the manufacturing of liposomal nanomedicines that can potentially encompass all manufacturing steps in an end-to-end system. Our main aim was to elucidate the key composition and process parameters that affect the physicochemical characteristics of the liposomes. Total flow rate, lipid concentration and residence time of the liposomes in a high ethanol environment (i.e., above 20% v/v) emerged as critical parameters to tailor liposome size between 80 and 150 nm. After liposome formation, the pressure and the surface area of the filter in the ultrafiltration unit were critical parameters in the process of clearing the dispersion from residual ethanol. As a final step, we integrated in-line measurement of liposome size and residual ethanol content. Such in-line measurements allow for real-time monitoring and in-process adjustment of key composition and process parameters.


Assuntos
COVID-19 , Lipossomos , Humanos , Lipossomos/química , Vacinas contra COVID-19 , Etanol , Tamanho da Partícula
4.
Int J Pharm ; 584: 119409, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32389790

RESUMO

Polymeric micelles (PM) based on poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide) (mPEG-b-p(HPMA-Bz)) loaded with paclitaxel (PTX-PM) have shown promising results in overcoming the suboptimal efficacy/toxicity profile of paclitaxel. To get insight into the stability of PTX-PM formulations upon storage and to optimize their in vivo tumor-targeted drug delivery properties, we set out to identify a lead PTX-PM formulation with the optimal polymer composition. To this end, PM based on four different mPEG5k-b-p(HPMA-Bz) block copolymers with varying molecular weight of the hydrophobic block (17-3 kDa) were loaded with different amounts of PTX. The hydrodynamic diameter was 52 ± 1 nm for PM prepared using polymers with longer hydrophobic blocks (mPEG5k-b-p(HPMA-Bz)17k and mPEG5k-b-p(HPMA-Bz)10k) and 39 ± 1 nm for PM composed of polymers with shorter hydrophobic blocks (mPEG5k-b-p(HPMA-Bz)5k and mPEG5k-b-p(HPMA-Bz)3k). The best storage stability and the slowest PTX release was observed for PM with larger hydrophobic blocks. On the other hand, smaller sized PM of shorter mPEG5k-b-p(HPMA-Bz)5k showed a better tumor penetration in 3D spheroids. Considering better drug retention capacity of the mPEG5k-b-p(HPMA-Bz)17k and smaller size of the mPEG5k-b-p(HPMA-Bz)5k as two desirable design features, we argue that PM based on these two polymers are the lead candidates for further in vivo studies.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Portadores de Fármacos/farmacologia , Metacrilatos/química , Micelas , Paclitaxel/farmacologia , Polietilenoglicóis/química , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Benzeno/química , Química Farmacêutica , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Elétrons , Células Hep G2 , Humanos , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA