Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Neural Regen Res ; 20(1): 253-264, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767490

RESUMO

JOURNAL/nrgr/04.03/01300535-202501000-00033/figure1/v/2024-05-14T021156Z/r/image-tiff The E3 ubiquitin ligase, carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP), also functions as a co-chaperone and plays a crucial role in the protein quality control system. In this study, we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer's disease. We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain. CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests, reduced amyloid-ß plaques, and decreased the expression of both amyloid-ß and phosphorylated tau. CHIP also alleviated the concentration of microglia and astrocytes around plaques. In APP/PS1 mice of a younger age, CHIP overexpression promoted an increase in ADAM10 expression and inhibited ß-site APP cleaving enzyme 1, insulin degrading enzyme, and neprilysin expression. Levels of HSP70 and HSP40, which have functional relevance to CHIP, were also increased. Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated, which may also reflect a potential mechanism for the neuroprotective effect of CHIP. Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice. Indeed, overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer's disease.

2.
J Int Med Res ; 52(4): 3000605241234555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587813

RESUMO

Among the various manifestations of COVID-19, the neurological implications of SARS-CoV-2 infection are of significant concern. Marchiafava-Bignami disease (MBD), a neurodegenerative disorder, exhibits a clinical spectrum ranging from mild progressive dementia in its chronic form to states of acute coma and varied mortality rates. Acute MBD primarily occurs in chronic alcoholics and malnourished individuals and is characterized by sudden loss of consciousness, seizures, confusion, and psychosis. We herein report a case of MBD presenting as acute loss of consciousness after the development of COVID-19. The patient presented with a history of fever and upper respiratory infection and was diagnosed with SARS-CoV-2 infection. He developed a neurological syndrome characterized by altered consciousness and convulsions, and brain magnetic resonance imaging revealed abnormal signals in the corpus callosum and frontoparietal lobes. Considering his alcohol intake history and the absence of other differential diagnoses, we diagnosed him with acute MBD triggered by COVID-19. After high-dose vitamin B1 and corticosteroid therapy, his clinical symptoms improved. In this case, we observed a temporal sequence between the development of COVID-19 and acute exacerbation of MBD. This case adds to the mounting evidence suggesting the potential effect of SARS-CoV-2 on the neurological system.


Assuntos
COVID-19 , Demência , Doença de Marchiafava-Bignami , Humanos , Masculino , Estado de Consciência , Doença de Marchiafava-Bignami/diagnóstico , Doença de Marchiafava-Bignami/diagnóstico por imagem , COVID-19/complicações , SARS-CoV-2 , Coma
3.
NPJ Parkinsons Dis ; 10(1): 70, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548756

RESUMO

This study aimed to investigate the association between irritable bowel syndrome (IBS) and Parkinson's disease (PD) utilizing prospective cohort study and Mendelian randomization. The dataset contained a substantial cohort of 426,911 participants from the UK Biobank, discussing the association between IBS and PD with Cox proportional hazards models and case-control analysis while adjusting for covariates such as age, gender, ethnicity and education level. In univariate Cox regression model, the risk of PD was reduced in IBS patients (HR: 0.774, 95%CI: 0.625-0.956, P = 0.017), but the statistical significance diminished in the three models after adjusting for other variables. In a few subgroup analyses, IBS patients are less likely to develop into PD, and patients diagnosed with IBS after 2000 also had a lower risk (HR: 0.633, 95%CI: 0.403-0.994, P = 0.047) of subsequently developing PD. In addition, we matched five healthy control participants based on gender and age at the end of the study for each IBS patient diagnosed during the follow-up period, and logistic regression results (OR:1.239, 95%CI: 0.896-1.680, P = 0.181) showed that IBS was not associated with the risk of PD. Mendelian randomization did not find significant evidence of the causal relationship between IBS and Parkinson's disease (OR: 0.801, 95%CI: 0.570-1.278, P = 0.204). Overall, we suggest that IBS status is not associated with the risk of developing PD, and that these findings provide valuable insights into the clinical management and resource allocation of patients with IBS.

4.
PLoS One ; 19(3): e0299026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442099

RESUMO

BACKGROUND: The peripheral immune system is altered in Parkinson's disease (PD), but the causal relationship between the two remains controversial. In this study, we aimed to estimate the causal relationship between peripheral immune features and PD using a two-sample Mendelian randomization (MR) approach. METHODS: Genome-wide association study (GWAS) data of peripheral blood immune signatures from European populations were used for exposure and PD summary statistics were used as results. We conducted a two-sample MR study using the inverse-variance weighted (IVW), MR-Egger, and weighted median methods to evaluate the causal association between these factors. MR-Egger and MR-PRESSO were used for sensitivity analysis to test and correct horizontal pleiotropy. RESULTS: A total of 731 immune traits were analyzed for association with PD using three MR methods. After adjustment for FDR, we observed four peripheral immunological features associated with PD using the IVW method, including expression of CX3CR1 on monocytes [OR: 0.85, 95% CI: (0.81, 0.91), P = 6.56E-07] and CX3CR1 on CD14+CD16+ monocytes [OR: 0.87, 95% CI: (0.82, 0.93), P = 9.95E-06]. CONCLUSIONS: Our study further revealed the important role of monocytes in PD and indicated that CX3CR1 expression on monocytes is associated with a reduced risk of PD.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Parkinson , Humanos , Análise da Randomização Mendeliana , Doença de Parkinson/genética , Monócitos , Fenótipo
5.
Front Neurol ; 15: 1326692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356889

RESUMO

Background: Overwhelming evidence points to that genetic factors contributing to the development of Alzheimer's disease (AD) and Parkinson's disease (PD). Genome-Wide Association Study (GWAS) has come a long way in the last decade. So far, a large number of GWAS studies have been published on neurological diseases and many other diseases, providing us with a wealth of genetic information and unique biological insights. Methods: Genomic DNA was extracted from both patients' and controls' peripheral blood samples utilizing the Blood Genome Extraction Kit. Single nucleotide polymorphisms (SNPs) were genotyped employing the enhanced multiple ligase detection reaction (iMLDR) technology. Results: A case-control study was conducted, involving 211 AD patients, 508 PD patients (including 117 with dementia), and 412 healthy individuals. Age and sex stratification analysis revealed that rs871269/TNIP1 was associated with LOAD (p = 0.035), and rs5011436/TMEM106B was associated with AD in males (p = 0.044) in the genotype model. In the allele model, rs871269/TNIP1 was found to be associated with PD in the Chinese Han population (p = 0.0035, OR 0.741, 95% CI 0.559-0.983), and rs708382/GRN was identified as a risk factor for Parkinson's disease dementia (PDD) in the Chinese Han population (p = 0.004, odds ratio (OR) 0.354, 95% confidence interval (CI) 0.171-0.733). However, no significant associations with AD or PD were observed for the remaining four loci (rs113020870/AGRN, rs6891966/HAVCR2, rs2452170/NTN5, rs1761461/LILRB2) in terms of allele or genotype frequencies. Conclusion: This study identifies rs871269/TNIP1 as a potential risk factor for both LOAD and PD, rs708382/GRN as a risk factor for PDD, and rs5011436/TMEM106B as associated with AD in males when stratified by age.

6.
J Neurol ; 271(4): 2042-2052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189920

RESUMO

Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder lacking reliable biomarkers. This study investigates plasma protein levels as potential biomarkers of disease severity and progression in NIID. In this study, we enrolled 30 NIID patients and 36 age- and sex-matched controls, following them for 1-2 years. Plasma neurofilament light (NfL), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and tau were measured using ultrasensitive single molecule array (Simoa) assays. Disease severity was evaluated with the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Activities of Daily Living (ADL), and CNS symptom counts, in addition to neuroimaging data. Our study revealed that NIID patients has significantly higher plasma NfL (median, 35.2 vs. 8.61 pg/mL, p < 0.001) and GFAP (102 vs. 79.0 pg/mL, p = 0.010) levels compared to controls, with NfL emerging as a robust diagnostic marker (AUC = 0.956). NfL levels were notably higher in acute-onset NIID (77.5 vs. 28.8 pg/mL, p = 0.001). NfL correlated strongly with disease severity, including MMSE (ρ = - 0.687, p < 0.001), MoCA (ρ = - 0.670, p < 0.001), ADL (ρ = 0.587, p = 0.001), CNS symptoms (ρ = 0.369, p = 0.045), and white matter hyperintensity volume (ρ = 0.620, p = 0.004). Higher baseline NfL (≥ 35.2 pg/mL) associated with increased ADL scores, CNS symptoms, and white matter hyperintensity at follow-up. UCH-L1 and total tau levels showed no significant differences. Our results suggested the potential of NfL as a promising biomarker of disease severity and progression in NIID.


Assuntos
Doenças Neurodegenerativas , Proteínas de Neurofilamentos , Humanos , Atividades Cotidianas , Filamentos Intermediários/metabolismo , Doenças Neurodegenerativas/metabolismo , Biomarcadores , Proteína Glial Fibrilar Ácida , Corpos de Inclusão Intranuclear
7.
Aging (Albany NY) ; 16(2): 1555-1580, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38240717

RESUMO

Genome-wide association studies (GWAS) have identified multiple risk variants for Parkinson's disease (PD). Nevertheless, how the risk variants confer the risk of PD remains largely unknown. We conducted a proteome-wide association study (PWAS) and summary-data-based mendelian randomization (SMR) analysis by integrating PD GWAS with proteome and protein quantitative trait loci (pQTL) data from human brain, plasma and CSF. We also performed a large transcriptome-wide association study (TWAS) and Fine-mapping of causal gene sets (FOCUS), leveraging joint-tissue imputation (JTI) prediction models of 22 tissues to identify and prioritize putatively causal genes. We further conducted PWAS, SMR, TWAS, and FOCUS using a multi-trait analysis of GWAS (MTAG) to identify additional PD risk genes to boost statistical power. In this large-scale study, we identified 16 genes whose genetically regulated protein abundance levels were associated with Parkinson's disease risk. We undertook a large-scale analysis of PD and correlated traits, through TWAS and FOCUS studies, and discovered 26 casual genes related to PD that had not been reported in previous TWAS. 5 genes (CD38, GPNMB, RAB29, TMEM175, TTC19) showed significant associations with PD at both the proteome-wide and transcriptome-wide levels. Our study provides new insights into the etiology and underlying genetic architecture of PD.


Assuntos
Doença de Parkinson , Transcriptoma , Humanos , Estudo de Associação Genômica Ampla , Proteoma/genética , Predisposição Genética para Doença , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Glicoproteínas de Membrana/genética
8.
Sci Total Environ ; 913: 169498, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38154632

RESUMO

There is yet no scientific consensus, and for now, on how to choose the optimal interpolation method and its parameters for mapping soil-borne organic pollutants. Take the polychlorinated biphenyls (PCBs) for instance, we present the comparison of some classic interpolation methods using a high-resolution soil monitoring database. The results showed that empirical Bayesian kriging (EBK) has the highest accuracy for predicting the total PCB concentration, while root mean squared error (RMSE) in inverse distance weighting (IDW) is among the highest in these interpolation methods. The logarithmic transformation of non-normally distributed data contributed to enhance considerably the semivariogram for modeling in kriging interpolation. The increasing of search neighborhood reduced IDW's RMSE, but slightly affected in ordinary kriging (OK), while both of them resulted in over smooth of prediction map. The existence of outliers made the difference between two points increase sharply, and thereby weakening spatial autocorrelation and decreasing the accuracy. As predicted error increased continuously, the prediction accuracy of different interpolation methods reached unanimity gradually. The attempt of the assisted interpolation algorithm did not significantly improve the prediction accuracy of the IDW method. This study constructed a standardized workflow for interpolation, which could reduce human error to reach higher interpolation accuracy for mapping soil-borne PCBs.

9.
Mov Disord ; 38(12): 2258-2268, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37990409

RESUMO

BACKGROUND: Patients with Parkinson's disease (PD) have consistently demonstrated brain structure abnormalities, indicating the presence of shared etiological and pathological processes between PD and brain structures; however, the genetic relationship remains poorly understood. OBJECTIVE: The aim of this study was to investigate the extent of shared genetic architecture between PD and brain structural phenotypes (BSPs) and to identify shared genomic loci. METHODS: We used the summary statistics from genome-wide association studies to conduct MiXeR and conditional/conjunctional false discovery rate analyses to investigate the shared genetic signatures between PD and BSPs. Subsequent expression quantitative trait loci mapping in the human brain and enrichment analyses were also performed. RESULTS: MiXeR analysis identified genetic overlap between PD and various BSPs, including total cortical surface area, average cortical thickness, and specific brain volumetric structures. Further analysis using conditional false discovery rate (FDR) identified 21 novel PD risk loci on associations with BSPs at conditional FDR < 0.01, and the conjunctional FDR analysis demonstrated that PD shared several genomic loci with certain BSPs at conjunctional FDR < 0.05. Among the shared loci, 16 credible mapped genes showed high expression in the brain tissues and were primarily associated with immune function-related biological processes. CONCLUSIONS: We confirmed the polygenic overlap with mixed directions of allelic effects between PD and BSPs and identified multiple shared genomic loci and risk genes, which are likely related to immune-related biological processes. These findings provide insight into the complex genetic architecture associated with PD. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Predisposição Genética para Doença/genética , Fenótipo , Encéfalo/diagnóstico por imagem , Polimorfismo de Nucleotídeo Único/genética , Loci Gênicos
10.
Curr Neurovasc Res ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37877151

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) is one of the most common forms of sleep-disordered breathing. Studies have shown that certain changes in metabolism play an important role in the pathophysiology of OSA. However, the causal relationship between these metabolites and OSA remains unclear. AIMS: We use a mendelian randomization (MR) approach to investigate the causal associations between the genetic liability to metabolites and OSA. METHODS: We performed a 2-sample inverse-variance weighted mendelian randomization analysis to evaluate the causal effects of genetically determined 486 metabolites on OSA. Multiple sensitivity analyses were performed to assess pleiotropy. We used multivariate mendelian randomization analyses to assess confounding factors and mendelian randomization Bayesian model averaging to rank the significant biomarkers by their genetic evidence. We also conducted a metabolic pathway analysis to identify potential metabolic pathways. RESULTS: We identified 14 known serum metabolites (8 risk factors and 6 protective factors) and 12 unknown serum metabolites associated with OSA. These 14 known metabolites included 8 lipids( 1-arachidonoylglycerophosphoethanolamine, Tetradecanedioate, Epiandrosteronesulfate, Acetylca Glycerol3-phosphate, 3-dehydrocarnitine, Margarate17:0, Docosapentaenoaten3;22:5n3), 3 Aminoacids (Isovalerylcarnitine,3-methyl-2-oxobutyrate,Methionine), 2 Cofactors and vitamins [Bilirubin(E,ZorZ,E),X-11593--O-methylascorbate], 1Carbohydrate(1,6-anhydroglucose). We also identified several metabolic pathways that involved in the pathogenesis of OSA. CONCLUSION: MR (mendelian randomization) approach was performed to identify 6 protective factors and 12 risk factors for OSA in the present study. 3-Dehydrocarnitine was the most significant risk factors for OSA. Our study also confirmed several significant metabolic pathways that were involved in the pathogenesis of OSA. Valine, leucine and isoleucine biosynthesis metabolic pathways were the most significant metabolic pathways that were involved in the pathogenesis of OSA.

11.
BMC Med Genomics ; 16(1): 253, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864208

RESUMO

BACKGROUND: Oculopharyngodistal myopathy (OPDM) is an autosomal dominant adult-onset degenerative muscle disorder characterized by ptosis, ophthalmoplegia and weakness of the facial, pharyngeal and limb muscles. Trinucleotide repeat expansions in non-coding regions of LRP12, G1PC1, NOTCH2NLC and RILPL1 were reported to be the etiologies for OPDM. RESULTS: In this study, we performed long-read whole-genome sequencing in a large five-generation family of 156 individuals, including 21 patients diagnosed with typical OPDM. We identified CGG repeat expansions in 5'UTR of RILPL1 gene in all patients we tested while no CGG expansion in unaffected family members. Repeat-primed PCR and fluorescence amplicon length analysis PCR were further confirmed the segregation of CGG expansions in other family members and 1000 normal Chinese controls. Methylation analysis indicated that methylation levels of the RILPL1 gene were unaltered in OPDM patients, which was consistent with previous studies. Our findings provide evidence that RILPL1 is associated OPDM in this large pedigree. CONCLUSIONS: Our results identified RILPL1 is the associated the disease in this large pedigree.


Assuntos
Distrofias Musculares , Adulto , Humanos , Músculo Esquelético , Distrofias Musculares/genética , Linhagem , Sequenciamento Completo do Genoma
12.
J Headache Pain ; 24(1): 111, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592229

RESUMO

BACKGROUND: While previous genome-wide association studies (GWAS) have identified multiple risk variants for migraine, there is a lack of evidence about how these variants contribute to the development of migraine. We employed an integrative pipeline to efficiently transform genetic associations to identify causal genes for migraine. METHODS: We conducted a proteome-wide association study (PWAS) by combining data from the migraine GWAS data with proteomic data from the human brain and plasma to identify proteins that may play a role in the risk of developing migraine. We also combined data from GWAS of migraine with a novel joint-tissue imputation (JTI) prediction model of 17 migraine-related human tissues to conduct transcriptome-wide association studies (TWAS) together with the fine mapping method FOCUS to identify disease-associated genes. RESULTS: We identified 13 genes in the human brain and plasma proteome that modulate migraine risk by regulating protein abundance. In addition, 62 associated genes not reported in previous migraine TWAS studies were identified by our analysis of migraine using TWAS and fine mapping. Five genes including ICA1L, TREX1, STAT6, UFL1, and B3GNT8 showed significant associations with migraine at both the proteome and transcriptome, these genes are mainly expressed in ependymal cells, neurons, and glial cells, and are potential target genes for prevention of neuronal signaling and inflammatory responses in the pathogenesis of migraine. CONCLUSIONS: Our proteomic and transcriptome findings have identified disease-associated genes that may give new insights into the pathogenesis and potential therapeutic targets for migraine.


Assuntos
Transtornos de Enxaqueca , Proteoma , Humanos , Proteoma/genética , Estudo de Associação Genômica Ampla , Proteômica , Transcriptoma , Transtornos de Enxaqueca/genética
13.
Sci Total Environ ; 898: 165450, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451441

RESUMO

Wang Lake Wetland is an important habitat for many fish and migratory birds. To explore the effect of periodic hydrological changes on the transfer and ecological risk of OCPs in the multimedia system of the wetland, eight sampling sites were selected for collecting soil (SS), sediment (SD) and water, to acquire dissolved phase (DP) and suspended particulate matter (SPM) samples during low- and high-flow periods. The results indicated that OCPs are pervasive in the various media of Wang Lake Wetland, and there was a significant temporal variability in concentration of ∑23OCPs in the SPM samples. Several OCPs exist certain ecological risks to aquatic organisms, but higher level of OCPs do not always equal to higher ecological risk. The residues of OCPs are largely attributed to their historical use, but recent inputs of some of them are still non-ignorable. The relatively higher values of organic carbon normalized partition coefficient (KOC) for SPM-W (KOC(SPM-W)) were obtained, which reflected the more frequent exchange of OCPs in the SPM samples. The sediment of the Wang Lake Wetland is likely to be a sink for several OCPs with high n-octanol/water partition coefficient (KOW) (e.g., DDTs and its metabolites), and high-temperature and rainfall-driven changes may promote the migration of OCPs with low KOW to the DP.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Animais , Áreas Alagadas , Lagos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Praguicidas/análise , Hidrocarbonetos Clorados/análise , Água , Material Particulado , China , Sedimentos Geológicos/química
14.
J Mater Chem B ; 11(24): 5607-5618, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37170629

RESUMO

Radiotherapy has been extensively applied to cancer therapy in clinical trials. However, radiation resistance and dose limitation generally hamper the efficacy of radiotherapy. There is an urgent need for radiosensitizers with high efficiency and safety to enhance the anti-tumor effect of radiotherapy. In this paper, a selenium-containing (Se) ruthenium (Ru) complex (RuSe) was designed as a radiosensitizer to synergistically augment the killing effect of radiotherapy on nasopharyngeal carcinoma cells. In this system, the heavy atomic effect of Ru enhances the photoelectron production triggered by X-rays, thus inducing a burst of reactive oxygen species (ROS). In addition, Se atoms with a strong polarization property were introduced into the ligand of the metal complex to enhance the tumor chemo/radiotherapy effect. Consequently, RuC with a weak atomic polarization effect, as a comparison for RuSe, was also rationally explored to elucidate the role of Se atoms on chemo/radiotherapy sensitization. Indeed, compared with RuC, RuSe at a sub-toxic dose was able to potentiate the lethality of radiotherapy after preconditioning with cancer cells, by inducing ROS over-production, decreasing the mitochondrial membrane potential, and arresting the cell cycle at the sub-G1 phase. Furthermore, upon radiation, RuSe was superior to RuC, by inducing apoptotic cell death by activating caspase-3, -8, and -9. In summary, this study not only demonstrates an effective and safe strategy for the application of RuSe complexes to the cancer-targeted chemo/radiotherapy of human cancers, but also sheds light on the potential mechanisms of such Se-containing drugs as efficient radiotherapy sensitizers.


Assuntos
Neoplasias Nasofaríngeas , Radiossensibilizantes , Rutênio , Selênio , Humanos , Selênio/farmacologia , Raios X , Rutênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Carcinoma Nasofaríngeo/tratamento farmacológico , Radiossensibilizantes/farmacologia , Neoplasias Nasofaríngeas/tratamento farmacológico
15.
J Neuroinflammation ; 20(1): 125, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231449

RESUMO

The meninges, membranes surrounding the central nervous system (CNS) boundary, harbor a diverse array of immunocompetent immune cells, and therefore, serve as an immunologically active site. Meningeal immunity has emerged as a key factor in modulating proper brain function and social behavior, performing constant immune surveillance of the CNS, and participating in several neurological diseases. However, it remains to be determined how meningeal immunity contributes to CNS physiology and pathophysiology. With the advances in single-cell omics, new approaches, such as single-cell technologies, unveiled the details of cellular and molecular mechanisms underlying meningeal immunity in CNS homeostasis and dysfunction. These new findings contradict some previous dogmas and shed new light on new possible therapeutic targets. In this review, we focus on the complicated multi-components, powerful meningeal immunosurveillance capability, and its crucial involvement in physiological and neuropathological conditions, as recently revealed by single-cell technologies.


Assuntos
Meninges , Doenças do Sistema Nervoso , Humanos , Sistema Nervoso Central
16.
Ann Clin Transl Neurol ; 10(7): 1119-1135, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37237429

RESUMO

OBJECTIVE: Leukoencephalopathies are a group of heterogeneous disorders characterized by the degeneration of white matter, resulting in a variety of progressive neurological symptoms. To date, over 60 genes linked to genetic leukoencephalopathies have been discovered through whole-exome sequencing (WES) and long-read sequencing. Nonetheless, the genetic diversity and clinical variability of these disorders among various racial groups remain largely unknown. Therefore, this study aims to analyze the genetic spectrum and clinical features of Chinese adult leukoencephalopathies and compare the genetic profiles in different populations. METHODS: A total of 129 patients suspected of possible genetic leukoencephalopathy were enrolled and underwent WES and dynamic mutation analysis. Bioinformatics tools were used to predict the pathogenicity of these mutations. Skin biopsies were conducted for further diagnosis. Genetic data sources from different populations were collected from published articles. RESULTS: Genetic diagnosis was established in 48.1% of patients, with WES identifying 57 pathogenic or likely pathogenic variants in 39.5% of cases. NOTCH3 and NOTCH2NLC were the most common mutated genes, accounting for 12.4% and 8.5% of cases, respectively. Dynamic mutation analysis revealed NOTCH2NLC GGC repeat expansions in 8.5% of patients. Different mutations resulted in varying clinical symptoms and imaging findings. Comparisons of genetic profiles between different populations showed distinct mutational spectrums in adult leukoencephalopathies. INTERPRETATION: This study highlights the importance of genetic testing for accurate diagnosis and improved clinical management of these disorders. It also sheds light on the genetic heterogeneity of adult leukoencephalopathies across different races, emphasizing the need for further research on this topic.


Assuntos
Leucoencefalopatias , Substância Branca , Adulto , Humanos , População do Leste Asiático , Testes Genéticos , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Mutação , Substância Branca/patologia
17.
Neurol Sci ; 44(10): 3545-3556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37184590

RESUMO

BACKGROUND: The discovery of skin intranuclear inclusions and GGC repeat expansion of NOTCH2NLC has greatly promoted the diagnosis of neuronal intranuclear inclusion disease (NIID). With highly heterogeneous clinical manifestations, NIID patients tend to be underdiagnosed at early stages. METHODS: This study comprehensively studied clinical manifestations, magnetic resonance imaging (MRI), and peripheral nerve conduction in 24 NIID and 166 other neurodegenerative disease (ND) subjects. The nomogram was plotted using the "rms" package, and the t-distributed stochastic neighbor embedding algorithm was performed. Associations between skin intranuclear inclusions and NOTCH2NLC GGC repeats were further analyzed. RESULTS: The clinical, MRI, and peripheral nerve conduction features seriously overlapped in NIID and ND patients; they were assigned variables according to their frequency and specificity in NIID patients. A nomogram that could distinguish NIID from ND was constructed according to the assigned variables and cutoff values of the above features. The occurrence of skin intranuclear inclusions and NOTCH2NLC GGC repeats ≥ 60 showed 100% consistency, and intranuclear inclusion frequency positively correlated with NOTCH2NLC GGC repeats. A hierarchical diagnostic flowchart for definite NIID was further established. CONCLUSION: We provide a novel nomogram with the potential to realize early identification and update the diagnostic flowchart for definitive diagnosis. Moreover, this is the first study to define the association between skin pathology and NOTCH2NLC genetics in NIID.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Imageamento por Ressonância Magnética , Pele
18.
Brain ; 146(8): 3373-3391, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36825461

RESUMO

GGC repeat expansion in the 5' untranslated region (UTR) of NOTCH2NLC is associated with a broad spectrum of neurological disorders, especially neuronal intranuclear inclusion disease (NIID). Studies have found that GGC repeat expansion in NOTCH2NLC induces the formation of polyglycine (polyG)-containing protein, which is involved in the formation of neuronal intranuclear inclusions. However, the mechanism of neurotoxicity induced by NOTCH2NLC GGC repeats is unclear. Here, we used NIID patient-specific induced pluripotent stem cell (iPSC)-derived 3D cerebral organoids (3DCOs) and cellular models to investigate the pathophysiological mechanisms of NOTCH2NLC GGC repeat expansion. IPSC-derived 3DCOs and cellular models showed the deposition of polyG-containing intranuclear inclusions. The NOTCH2NLC GGC repeats could induce the upregulation of autophagic flux, enhance integrated stress response and activate EIF2α phosphorylation. Bulk RNA sequencing for iPSC-derived neurons and single-cell RNA sequencing (scRNA-seq) for iPSC-derived 3DCOs revealed that NOTCH2NLC GGC repeats may be associated with dysfunctions in ribosome biogenesis and translation. Moreover, NOTCH2NLC GGC repeats could induce the NPM1 nucleoplasm translocation, increase nucleolar stress, impair ribosome biogenesis and induce ribosomal RNA sequestration, suggesting dysfunction of membraneless organelles in the NIID cellular model. Dysfunctions in ribosome biogenesis and phosphorylated EIF2α and the resulting increase in the formation of G3BP1-positive stress granules may together lead to whole-cell translational inhibition, which may eventually cause cell death. Interestingly, scRNA-seq revealed that NOTCH2NLC GGC repeats may be associated with a significantly decreased proportion of immature neurons while 3DCOs were developing. Together, our results underscore the value of patient-specific iPSC-derived 3DCOs in investigating the mechanisms of polyG diseases, especially those caused by repeats in human-specific genes.


Assuntos
DNA Helicases , RNA Helicases , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas com Motivo de Reconhecimento de RNA , Regiões 5' não Traduzidas , Corpos de Inclusão Intranuclear , Ribossomos , Expansão das Repetições de Trinucleotídeos/genética
19.
Int J Stroke ; 18(1): 109-116, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367219

RESUMO

BACKGROUND: Lacunar stroke accounts for a quarter of all strokes, but little is known about the underlying pathological mechanisms. Analysis of serum metabolites may allow better understanding of the underlying biological processes. Mendelian randomization (MR) can provide information on the causality of associations. AIMS: To identify causal relationships between serum metabolites and lacunar stroke. METHODS: We applied a two-sample MR analysis to evaluate relationships between 486 serum metabolites and lacunar stroke. The inverse-variance weighted (IVW) method was used to estimate the causal relationship of the exposure on the outcome, while sensitivity analyses were performed using MR-Egger, weighted median, and MR-PRESSO to eliminate the pleiotropy. We also performed a metabolic pathway analysis to identify potential metabolic pathways. RESULTS: We identified 15 known (8 risk and 7 protective) and 14 unknown serum metabolites associated with lacunar stroke. Among the known risk metabolites, two were lipids (1-linoleoylglycerophosphoethanolamine and dihomo-linolenate (20:3n3 or n6)), five amino acids (kynurenine, isobutyrylcarnitine, aspartate, trans-4-hydroxyproline, and 3-methyl-2-oxovalerate), and one peptide (ADSGEGDFXAEGGGVR). The known protective metabolites included four lipids (4-androsten-3beta,17beta-diol disulfate 1, 1-palmitoleoylglycerophosphocholine, adrenate (22:4n6), and glycodeoxycholate), one amino acid (methionine), and two exogenous metabolites (homostachydrine and 2-methoxyacetaminophen sulfate). Metabolic pathway analysis identified several pathways that might be involved in the disease. CONCLUSION: We identified eight risk and seven protective human serum metabolites associated with lacunar stroke. Isobutyrylcarnitine was positively associated with an increased risk of lacunar stroke. In addition, 3-methyl-2-oxovalerate and aspartate may be involved in the disease pathogenesis through metabolic pathways.


Assuntos
Acidente Vascular Cerebral Lacunar , Acidente Vascular Cerebral , Humanos , Ácido Aspártico , Análise da Randomização Mendeliana , Acidente Vascular Cerebral Lacunar/genética , Acidente Vascular Cerebral/genética , Lipídeos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
20.
Brain Pathol ; 33(3): e13124, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36322611

RESUMO

The p.Thr61Ile (p.T61I) mutation in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) was deemed a causative factor in Parkinson's disease (PD). However, the pathomechanism of the CHCHD2 p.T61I mutation in PD remains unclear. Few existing mouse models of CHCHD2-related PD completely reproduce the features of PD, and no transgenic or knock-in (KI) mouse models of CHCHD2 mutations have been reported. In the present study, we generated a novel CHCHD2 p.T61I KI mouse model, which exhibited accelerated mortality, progressive motor deficits, and dopaminergic (DA) neurons loss with age, accompanied by the accumulation and aggregation of α-synuclein and p-α-synuclein in the brains of the mutant mice. The mitochondria of mouse brains and induced pluripotent stem cells (iPSCs)-derived DA neurons carrying the CHCHD2 p.T61I mutation exhibited aberrant morphology and impaired function. Mechanistically, proteomic and RNA sequencing analysis revealed that p.T61I mutation induced mitochondrial dysfunction in aged mice likely through repressed insulin-degrading enzyme (IDE) expression, resulting in the degeneration of the nervous system. Overall, this CHCHD2 p.T61I KI mouse model recapitulated the crucial clinical and neuropathological aspects of patients with PD and provided a novel tool for understanding the pathogenic mechanism and therapeutic interventions of CHCHD2-related PD.


Assuntos
Proteínas de Ligação a DNA , Doença de Parkinson , Fatores de Transcrição , Animais , Camundongos , alfa-Sinucleína/genética , Modelos Animais de Doenças , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteômica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA