Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 16(24): e202300715, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37661195

RESUMO

The practical application of lithium cobalt oxide (LiCoO2 ) cathodes at high voltages is hindered by the instability of the surface structure and side reactions with the electrolyte. Herein, we prepared a multifunctional hierarchical core@double-shell structured LiCoO2 (MS-LCO) cathode material using a scalable sol-gel method. The MS-LCO cathode material comprised an outer shell with fast lithium-ion conductivity, a La/Zr co-doped inner shell, and a bulk LiCoO2 core. The outermost shell prevented direct contact between the electrolyte and LiCoO2 core, which alleviated the electrolyte decomposition and loss of active cobalt, while the La/Zr co-doped shell improved the structural stability at higher voltages in a half-cell with a liquid electrolyte. The MS-LCO cathode exhibited a stable capacity of 163.1 mAh g-1 after 500 cycles at 0.5 C, and a high specific capacity of 166.8 mAh g-1 at 2 C. In addition, a solid lithium battery with the surface-passivated MS-LCO cathode and a polyethylene oxide (PEO)-based inorganic/organic composite electrolyte retained 85.8 % of its initial discharge capacity after 150 cycles at a charging cutoff voltage of 4.3 V. Thus, the introduction of a surface-passivating shell can effectively suppress the decomposition of PEO caused by highly reactive oxygen species in LiCoO2 at high voltages.

2.
Small ; 19(39): e2302537, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37267937

RESUMO

Carbonaceous materials are widely investigated as anodes for potassium-ion batteries (PIBs). However, the inferior rate capability, low areal capacity, and limited working temperature caused by sluggish K-ions diffusion kinetics are still primary challenges for carbon-based anodes. Herein, a simple temperature-programmed co-pyrolysis strategy is proposed for the efficient synthesis of topologically defective soft carbon (TDSC) based on inexpensive pitch and melamine. The skeletons of TDSC are optimized with shortened graphite-like microcrystals, enlarged interlayer spacing, and abundant topological defects (e.g., pentagons, heptagons, and octagons), which endow TDSC with fast pseudocapacitive K-ion intercalation behavior. Meanwhile, micrometer-sized structure can reduce the electrolyte degradation over particle surface and avoid unnecessary voids, ensuring a high initial Coulombic efficiency as well as high energy density. These synergistic structural advantages contribute to excellent rate capability (116 mA h g-1 at 20 C), impressive areal capacity (1.83 mA h cm-2 with a mass loading of 8.32 mg cm-2 ), long-term cycling stability (capacity retention of 91.8% after 1200 h cycling), and low working temperature (-10 °C) of TDSC anodes, demonstrating great potential for the practical application of PIBs.

3.
Nat Commun ; 14(1): 2883, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208342

RESUMO

The Li metal is an ideal anode material owing to its high theoretical specific capacity and low electrode potential. However, its high reactivity and dendritic growth in carbonate-based electrolytes limit its application. To address these issues, we propose a novel surface modification technique using heptafluorobutyric acid. In-situ spontaneous reaction between Li and the organic acid generates a lithiophilic interface of lithium heptafluorobutyrate for dendrite-free uniform Li deposition, which significantly improves the cycle stability (Li/Li symmetric cells >1200 h at 1.0 mA cm-2) and Coulombic efficiency (>99.3%) in conventional carbonate-based electrolytes. This lithiophilic interface also enables full batteries to achieve 83.2% capacity retention over 300 cycles under realistic testing condition. Lithium heptafluorobutyrate interface acts as an electrical bridge for uniform lithium-ion flux between Li anode and plating Li, which minimizes the occurrence of tortuous lithium dendrites and lowers interface impedance.

4.
Inorg Chem ; 62(3): 1075-1085, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36625763

RESUMO

Herein, hexaazamacrocyclic ligand LN6 was employed to construct a series of photochromic rare-earth complexes, [Ln(LN6)(NO3)2](BPh4) [1-Ln, Ln = Dy, Tb, Eu, Gd, Y; LN6 = (3E,5E,10E,12E)-3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane-3,5,10,12-tetraene]. The behavior of photogenerated radicals of hexaazamacrocyclic ligands was revealed for the first time. Upon 365 nm light irradiation, complexes 1-Ln exhibit photochromic behavior induced by photogenerated radicals according to EPR and UV-vis analyses. Static and dynamic magnetic studies of 1-Dy and irradiated product 1-Dy* indicate weak ferromagnetic interactions among DyIII ions and photogenerated LN6 radicals, as well as slow magnetization relaxation behavior under a 2 kOe applied field. Further fitting analyses show that the magnetization relaxation in 1-Dy* is markedly different from 1-Dy. Time-dependent fluorescence measurements reveal the characteristic luminescence quenching dynamics of lanthanide in the photochromic process. Especially for irradiated product 1-Eu*, the luminescence is almost completely quenched within 5 min with a quenching efficiency of 98.4%. The results reported here provide a prospect for the design of radical-induced photochromic lanthanide single-molecule magnets and will promote the further development of multiresponsive photomagnetic materials.


Assuntos
Elementos da Série dos Lantanídeos , Luminescência , Magnetismo , Imãs , Fluorescência , Ligantes
5.
ChemSusChem ; 16(7): e202202252, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36627241

RESUMO

Ni-rich cathode materials are considered promising candidates for next-generation lithium-ion batteries because of their high energy density and low cost. However, interphase failure at the surface of Ni-rich cathodes negatively impacts cycling performance, making it challenging to meet the requirements of long-term applications. In this study, a strategy is developed to improve interphase properties through introduction of a nucleophilic reaction-based additive, using an appropriate amount of the inducer lithium isopropoxide (LIP) in the commercial electrolyte to achieve long-term cycling stability of Li||LiNi0.83 Co0.11 Mn0.06 O2 (NCM83) cells. This strategy enables Li||NCM83 cells to maintain a capacity of 148.7 mAh g-1 with a retention of 83.3 % even after 500 cycles. This outstanding cycling stability is attributed to a robust cathode-electrolyte interphase (CEI) constructed on NCM83 surface LIP-induce ring-opening polymerization of ethylene carbonate (EC). As a result, the organic-inorganic components of the CEI effectively constrain gas evolution and the corresponding phase transformation behavior. Furthermore, the CEI also suppresses microcrack formation and eventually sustains the Ni valence and coordination environment at high voltage.

6.
Sensors (Basel) ; 22(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365973

RESUMO

The magnetometer is a vital measurement component for attitude measurement of near-Earth satellites and autonomous magnetic navigation, and monitoring health is significant. However, due to the compact structure of the microsatellites, the stray magnetic changes caused by the complex working conditions of each system will inevitably interfere with the magnetometer measurement. In addition, due to the limited capacity of the satellite-ground measurement channels and the telemetry errors caused by the harsh space environment, the magnetic data collected by the ground station are partially missing. Therefore, reconstructing the telemetry data on the ground has become one of the key technologies for establishing a high-precision magnetometer twin model. In this paper, firstly, the stray magnetic interference is eliminated by correcting the installation matrix for different working conditions. Then, the autocorrelation characteristics of the residuals are analyzed, and the TCN-SE (temporal convolutional network-squeeze and excitation) network with long-term memory is designed to model and extrapolate the historical residual data. In addition, MAE (mean absolute error) is used to analyze the data without missing at the corresponding time in the forecast period and decreases to 74.63 nT. The above steps realize the accurate mapping from the simulation values to the actual values, thereby achieving the reconstruction of missing data and establishing a solid foundation for the judgment of the health state of the magnetometer.


Assuntos
Projetos de Pesquisa , Telemetria , Simulação por Computador , Tempo , Fenômenos Magnéticos
7.
ACS Appl Mater Interfaces ; 14(26): 29813-29821, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749257

RESUMO

Development of high-performance cathode materials is one of the key challenges in the practical application of sodium-ion batteries. Among all the cathode materials, layered sodium transition-metal oxides are particularly attractive. However, undesired phase transitions are often reported and have detrimental effects on the structure stability and electrochemical performance. Cu substitution of zinc in the P2-type Na0.6Mn0.7Ni0.15Zn0.15-xCuxO2 (x = 0, 0.075, and 0.15) composites was investigated in this study for mitigating the biphase transition and enhancing the electrochemical performance of sodium-ion batteries. The coupling effect of Zn and Cu enables an excellent capacity retention of 96.4% of the initial discharge capacity after 150 cycles at 0.1 C in the Na/Na0.6Mn0.7Ni0.15Zn0.075Cu0.075O2 cell. The biphase transition that occurred in the high voltage range has been significantly suppressed after the incorporation of Cu in Na0.6Mn0.7Ni0.15Zn0.15O2, which was confirmed by in situ X-ray diffraction studies. Moreover, the substitution of the inert element Zn with electrochemically active Cu leads to the suppression of anionic redox and the occurrence of Cu2+/3+ redox reaction, and the electrolyte decomposition is impeded after the introduction of electrochemically active Cu in the Na0.6Mn0.7Ni0.15Zn0.15-xCuxO2 composite cathode. The enhanced electrochemical performance in the Na0.6Mn0.7Ni0.15Zn0.075Cu0.075O2 electrode can be ascribed to the coexistence of Zn and Cu and alleviated volumetric change as well as suppressed electrode/electrolyte side reaction after Cu substitution.

8.
Adv Sci (Weinh) ; 9(3): e2103477, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34784117

RESUMO

Carbon-based nanomaterials have been regarded as promising non-noble metal catalysts for renewable energy conversion system (e.g., fuel cells and metal-air batteries). In general, graphitic skeleton and porous structure are both critical for the performances of carbon-based catalysts. However, the pursuit of high surface area while maintaining high graphitization degree remains an arduous challenge because of the trade-off relationship between these two key characteristics. Herein, a simple yet efficient approach is demonstrated to fabricate a class of 2D N-doped graphitized porous carbon nanosheets (GPCNSs) featuring both high crystallinity and high specific surface area by utilizing amine aromatic organoalkoxysilane as an all-in-one precursor and FeCl3 ·6H2 O as an active salt template. The highly porous structure of the as-obtained GPCNSs is mainly attributed to the alkoxysilane-derived SiOx nanodomains that function as micro/mesopore templates; meanwhile, the highly crystalline graphitic skeleton is synergistically contributed by the aromatic nucleus of the precursor and FeCl3 ·6H2 O. The unusual integration of graphitic skeleton with porous structure endows GPCNSs with superior catalytic activity and long-term stability when used as electrocatalysts for oxygen reduction reaction and Zn-air batteries. These findings will shed new light on the facile fabrication of highly porous carbon materials with desired graphitic structure for numerous applications.

9.
Sensors (Basel) ; 21(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502677

RESUMO

The star tracker is widely used for high-accuracy missions due to its high accuracy position high autonomy and low power consumption. On the other hand, the ability of interference suppression of the star tracker has always been a hot issue of concern. A SLIC-DBSCAN-based algorithm for extracting effective information from a single image with strong interference has been developed in this paper to remove interferences. Firstly, the restricted LC (luminance-based contrast) transformation is utilized to enhance the contrast between background noise and the large-area interference. Then, SLIC (the simple linear iterative clustering) algorithm is adopted to segment the saliency map and in this process, optimized parameters are harnessed. Finally, from these segments, features are extracted and superpixels with similar features are combined by using DBSCAN (density-based spatial clustering of applications with noise). The proposed algorithm is proved effective by successfully removing large-area interference and extracting star spots from the sky region of the real star image.

10.
J Transl Med ; 19(1): 321, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321016

RESUMO

BACKGROUND: Early prediction of acute kidney injury (AKI) after liver transplantation (LT) facilitates timely recognition and intervention. We aimed to build a risk predictor of post-LT AKI via supervised machine learning and visualize the mechanism driving within to assist clinical decision-making. METHODS: Data of 894 cases that underwent liver transplantation from January 2015 to September 2019 were collected, covering demographics, donor characteristics, etiology, peri-operative laboratory results, co-morbidities and medications. The primary outcome was new-onset AKI after LT according to Kidney Disease Improving Global Outcomes guidelines. Predicting performance of five classifiers including logistic regression, support vector machine, random forest, gradient boosting machine (GBM) and adaptive boosting were respectively evaluated by the area under the receiver-operating characteristic curve (AUC), accuracy, F1-score, sensitivity and specificity. Model with the best performance was validated in an independent dataset involving 195 adult LT cases from October 2019 to March 2021. SHapley Additive exPlanations (SHAP) method was applied to evaluate feature importance and explain the predictions made by ML algorithms. RESULTS: 430 AKI cases (55.1%) were diagnosed out of 780 included cases. The GBM model achieved the highest AUC (0.76, CI 0.70 to 0.82), F1-score (0.73, CI 0.66 to 0.79) and sensitivity (0.74, CI 0.66 to 0.8) in the internal validation set, and a comparable AUC (0.75, CI 0.67 to 0.81) in the external validation set. High preoperative indirect bilirubin, low intraoperative urine output, long anesthesia time, low preoperative platelets, and graft steatosis graded NASH CRN 1 and above were revealed by SHAP method the top 5 important variables contributing to the diagnosis of post-LT AKI made by GBM model. CONCLUSIONS: Our GBM-based predictor of post-LT AKI provides a highly interoperable tool across institutions to assist decision-making after LT.


Assuntos
Injúria Renal Aguda , Transplante de Fígado , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Adulto , Humanos , Transplante de Fígado/efeitos adversos , Doadores Vivos , Aprendizado de Máquina , Medição de Risco , Aprendizado de Máquina Supervisionado
11.
ACS Appl Mater Interfaces ; 12(39): 43624-43633, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32876427

RESUMO

Cubic N,S codoped carbon coating MnS-FeS2 composites (MnS-FeS2@NSC) with a hollow structure were prepared and used as anode materials for sodium-ion batteries. MnS-FeS2@NSC exhibits excellent cycle performance and high rate capability and delivered a reversible capacity of 501.0 mAh g-1 after 800 cycles at a current density of 0.1 A g-1 with a capacity retention of 81%. More importantly, the MnS-FeS2@NSC anode holds long-term cycle stability; the capacity can remain 134.0 mAh g-1 after 14 500 cycles at 4 A g-1. Kinetic analysis demonstrated that Na+ storage follows a pseudocapacitive dominating process, which is ascribed to the origin of the outstanding rate performance of the MnS-FeS2@NSC material. The enhancement of electrochemical performance is attributed to the hollow structure and the N,S codoped carbon coating structure, which can reduce the diffusion distance for sodium ions and electrons, alleviate volume expansion during sodium-ion insertion/extraction, and retain the structural integrity effectively. Furthermore, a two-step sodiation processes with FeS2 sodiation prior to MnS was demonstrated by X-ray diffraction (XRD), and the electrochemical impedance spectroscopy (EIS) spectra might indicate that the accumulation of the metallic elements in the preconversion reaction can accelerate the transfer of electrons and ions in the further conversion process.

12.
Sensors (Basel) ; 20(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110942

RESUMO

Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer-Rao lower bound (BCRLB) provides a lower bound on parameter estimation, it can be utilized as the accuracy metric for target tracking. In this strategy, in order to improve the LPI performance of the radar network, the total dwell time consumption of the underlying system is minimized, while guaranteeing a predetermined tracking accuracy. There are two adaptable parameters in the optimization problem: one for dwell time, and the other for bandwidth allocation. Since the nonlinear programming-based genetic algorithm (NPGA) can solve the nonlinear problem well, we develop a method based upon NPGA to solve the resulting problem. The simulation results demonstrate that the proposed strategy has superiority over traditional algorithms, and can achieve a better LPI performance of this radar network.

13.
ACS Appl Mater Interfaces ; 11(20): 18504-18510, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31033271

RESUMO

Lithium (Li) metal is a favorable anode for most energy storage equipment, thanks to its higher theoretical specific capacity. However, nonuniform Li nucleation/growth results in large-sized and irregular dendrites generated from the Li anode, which causes rapid capacity fade and serious safety hazard, hindering its widespread practical applications. In this paper, with the aid of a lithium nitrate (LiNO3) additive in a carbonate-based electrolyte, the Li anode shows low hysteresis for in excess of 1000 h at a current density of 0.5 mA cm-2. At the same time, a Li-graphite dual-ion battery exhibits an outstanding cycling stability at 5C; after 1000 cycles, 81% of the capacity is retained. After calculation, the Li-graphite dual-ion battery shows a competitive specific energy density of 243 Wh kg-1 at a power density of 234 W kg-1. Moreover, the linear sweep voltammetry test was first performed to analyze the Li nucleation/growth mechanism and explain the effect of the LiNO3 additive. The superior electrochemical properties of the Li-graphite dual-ion battery are ascribed to the formation of smooth Li composed of Li nanoparticles and a steady solid electrolyte interface film.

14.
Nat Commun ; 10(1): 1363, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911010

RESUMO

Lithium metal batteries have been considerably limited by the problems of uncontrolled dendritic lithium formation and the highly reactive nature of lithium with electrolytes. Herein, we have developed functional porous bilayer composite separators by simply blade-coating polyacrylamide-grafted graphene oxide molecular brushes onto commercial polypropylene separators. Our functional porous bilayer composite separators integrate the lithiophilic feature of hairy polyacrylamide chains and fast electrolyte diffusion pathways with the excellent mechanical strength of graphene oxide nanosheets and thus enable molecular-level homogeneous and fast lithium ionic flux on the surfaces of electrodes. As a result, dendrite-free uniform lithium deposition with a high Coulombic efficiency (98%) and ultralong-term reversible lithium plating/stripping (over 2600 h) at a high current density (2 mA cm-2) are achieved for lithium metal anodes. Remarkably, lithium metal anodes with an unprecedented stability of more than 1900 h cycling at an ultrahigh current density of 20 mA cm-2 are demonstrated.

15.
ACS Appl Mater Interfaces ; 10(41): 35296-35305, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30247014

RESUMO

Suppressing the formation of lithium (Li) dendrites is central to implementing Li-metal anode, which has gained growing attention due to its ultrahigh specific capacity and low redox potential. Here, a novel approach is adopted to deposit Li-metal within a rigid three-dimensional (3D) carbon paper (3DCP) network, which consists of a cross-link framework of carbon fibers and graphene nanosheets (GNs). This unique structure yields a uniform distribution of Li-nuclei during the preliminary stage of Li-plating and the formation of a stable solid-electrolyte interface. The as-obtained anode can deliver a high areal capacity of 10 mAh cm-2 without the dendritic formation after 1000 cycles in a Li@3DCP/LiFePO4 full cell at 4 C. In addition, the Li@3DCP anode displays low voltage platform (<20 mV at 1 mA cm-2), high plating/stripping efficiency (99.0%), and long lifespan (>1000 h). When coupled with LiNi0.8Co0.15Al0.05O2 cathode, the Li@3DCP electrode exhibits a superior rate capability up to 10 C and high temperature performance (60 °C). The unprecedented performance is attributed to the desirable combination of micro/nanostructures in 3DCP, in which carbon fiber framework provides the mechanical stability for volume change, whereas numerous lithiophilicity sites on GNs enable the suppression of Li-dendrite growth.

16.
Sensors (Basel) ; 18(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200494

RESUMO

Although radiation power minimization is the most important method for an advanced stealth aircraft to achieve the low probability of detection (LPD) performance against the opposite passive detection system (PDS), it is not always effective when the performance of PDS is advanced. In a target tracking scenario, an interference tactic is proposed in this paper to keep the airborne radar in an LPD state. Firstly, this paper introduces the minimization radiation power design of airborne radar based on the distance between the radar and the target, and introduces the minimization radiation power design of the airborne jammer based on the predicted detection probability of the opposite PDS. Then, after consulting the most commonly used constant false alarm rate (CFAR) technologies in passive detection systems, including the cell average CFAR, the greatest of CFAR, the smallest of CFAR and the ordered statistic CFAR, this paper analyzes their relationships and points out the way of interference. Finally, based on the constraints, not only including the predicted detection probabilities of airborne radar and opposite PDS, respectively, but also including the time synchronization which is necessary to avoid the leaked interference power generated by airborne jammer jamming the airborne radar echoes from the target, this paper establishes a math model to minimize the total interference power of airborne jammer without interfering target tracking. Simulation results show that the proposed model is effective.

17.
Entropy (Basel) ; 20(3)2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33265288

RESUMO

In this paper, the problem of low probability of intercept (LPI)-based radar waveform design for distributed multiple-radar system (DMRS) is studied, which consists of multiple radars coexisting with a wireless communication system in the same frequency band. The primary objective of the multiple-radar system is to minimize the total transmitted energy by optimizing the transmission waveform of each radar with the communication signals acting as interference to the radar system, while meeting a desired target detection/characterization performance. Firstly, signal-to-clutter-plus-noise ratio (SCNR) and mutual information (MI) are used as the practical metrics to evaluate target detection and characterization performance, respectively. Then, the SCNR- and MI-based optimal radar waveform optimization methods are formulated. The resulting waveform optimization problems are solved through the well-known bisection search technique. Simulation results demonstrate utilizing various examples and scenarios that the proposed radar waveform design schemes can evidently improve the LPI performance of DMRS without interfering with friendly communications.

18.
Entropy (Basel) ; 20(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33265358

RESUMO

This paper presents a novel Nash bargaining solution (NBS)-based cooperative game-theoretic framework for power control in a distributed multiple-radar architecture underlying a wireless communication system. Our primary objective is to minimize the total power consumption of the distributed multiple-radar system (DMRS) with the protection of wireless communication user's transmission, while guaranteeing each radar's target detection requirement. A unified cooperative game-theoretic framework is proposed for the optimization problem, where interference power constraints (IPCs) are imposed to protect the communication user's transmission, and a minimum signal-to-interference-plus-noise ratio (SINR) requirement is employed to provide reliable target detection for each radar. The existence, uniqueness and fairness of the NBS to this cooperative game are proven. An iterative Nash bargaining power control algorithm with low computational complexity and fast convergence is developed and is shown to converge to a Pareto-optimal equilibrium for the cooperative game model. Numerical simulations and analyses are further presented to highlight the advantages and testify to the efficiency of our proposed cooperative game algorithm. It is demonstrated that the distributed algorithm is effective for power control and could protect the communication system with limited implementation overhead.

19.
Sensors (Basel) ; 17(12)2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29186850

RESUMO

In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme.

20.
Sensors (Basel) ; 17(10)2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-29057805

RESUMO

In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with N t UMTS-based transmit station of L t antenna elements and N r receive stations of L r antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA