Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(9): 1532-1547, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38501727

RESUMO

Chronic inflammation at diabetic wound sites results in the uncontrolled accumulation of pro-inflammatory factors and reactive oxygen species (ROS), which impedes cell proliferation and delays wound healing. To promote the healing of diabetic wounds, chitosan/gelatin hydrogels containing ceria nanoparticles (CNPs) of various sizes were created in the current study. CNPs' efficacy in removing O 2 • - , •OH, and H2O2 was demonstrated, and the scavenging ability of CNPs of varying sizes was compared. The in vitro experiments demonstrated that hydrogels containing CNPs could effectively protect cells from ROS-induced damage and facilitate mouse fibroblast migration. Furthermore, during the treatment of diabetic wounds in vivo, hydrogels containing CNPs exhibited anti-inflammatory activity and could reduce the expression of the pro-inflammatory factors TNF-α (above 30%), IL-6 (above 90%), and IL-1ß (above 80%), and effectively promote wound closure (above 80%) by inducing re-epithelialization, collagen deposition, and angiogenesis. In addition, the biological properties and therapeutic effects of hydrogels containing CNPs of various sizes were compared and discussed. The finding revealed that hydrogels with 4 nm CNPs exhibited more significant biological properties and had implications for diabetic wound treatment.


Assuntos
Cério , Quitosana , Gelatina , Hidrogéis , Cicatrização , Animais , Quitosana/química , Hidrogéis/química , Hidrogéis/farmacologia , Gelatina/química , Cicatrização/efeitos dos fármacos , Camundongos , Cério/química , Cério/farmacologia , Nanopartículas/química , Diabetes Mellitus Experimental , Masculino , Espécies Reativas de Oxigênio/metabolismo , Movimento Celular/efeitos dos fármacos
2.
Animal Model Exp Med ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697489

RESUMO

BACKGROUND: Paraplegia after spinal cord ischemia is a devastating condition in the clinic. Here, we develop an awake rabbit model of spinal cord ischemia with delayed paraplegia and explore the influence of ambient temperature on the outcomes after injury. METHODS: A total of 47 male rabbits were involved in the present study. Transient spinal cord ischemia was induced by occluding the infrarenal abdominal aorta of awake rabbits at different ambient temperatures. To find the optimal conditions for developing delayed paraplegia, hindlimb motor function after ischemia was evaluated between experiments. RESULTS: The onset and magnitude of ischemic injury varied with the ambient temperature maintained during the peri-ischemia period. More serious spinal cord injury occurred when ischemia was induced at higher temperatures. At 18°C, 25-minute ischemia resulted in 74% of rabbits developing delayed paraplegia. At a temperature of 28°C or higher, most of the animals developed acute paraplegia immediately. While at 13°C, rabbits usually regained normal motor function without paraplegia. CONCLUSION: This awake rabbit model is highly reproducible and will be helpful in future studies of delayed paraplegia after spinal cord ischemia. The ambient temperature must be considered while using this model during investigation of therapeutic interventions.

3.
Adv Healthc Mater ; 12(24): e2300632, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37167626

RESUMO

The over production of reactive oxygen species (ROS) plays a critical role in the progression of chronic kidney disease (CKD). Organic ROS scavengers currently used for CKD treatment do not satisfy low dosage and high efficiency requirements. Ceria nanomaterials featured with renewable ROS scavenging activity are potential candidates for CKD treatment. Herein, a method for the synthesis of ceria nanoclusters (NCs) featured with small size of ≈1.2 nm is reported. The synthesized NCs are modified by three hydrophilic ligands with different molecular weights, including succinic acid (SA), polyethylene glycol diacid 600 (PEG600), and polyethylene glycol diacid 2000 (PEG2000). The surface modified NCs exhibit excellent ROS scavenging activity due to the high Ce3+ /Ce4+ ratio in their crystal structures. Compared with bigger-sized ceria nanoparticles (NPs) (≈45 nm), NCs demonstrate smoother blood concentration-time curve, lower organ accumulation, and faster metabolic rate superiorities. The administration of NCs to CKD mice, especially PEG600 and PEG2000 modified NCs, can effectively inhibit oxidative stress, inflammation, renal fibrosis, and apoptosis in their kidneys. Due to these benefits, the constructed NCs can ameliorate the progression of CKD. These findings suggest that NCs is a potential redox nanomedicine for future clinical treatment of CKD.


Assuntos
Nanopartículas , Insuficiência Renal Crônica , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Estresse Oxidativo , Insuficiência Renal Crônica/tratamento farmacológico , Polietilenoglicóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA