Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38842493

RESUMO

Hydrated cation-π interactions at liquid-solid interfaces between hydrated cations and aromatic ring structures of carbon-based materials are pivotal in many material, biological, and chemical processes, and water serves as a crucial mediator in these interactions. However, a full understanding of the hydrated cation-π interactions between hydrated alkaline earth cations and aromatic ring structures, such as graphene remains elusive. Here, we present a molecular picture of hydrated cation-π interactions for Mg2+ and Ca2+ by using the density functional theory methods. Theoretical results show that the graphene sheet can distort the hydration shell of the hydrated Ca2+ to interact with Ca2+ directly, which is water-cation-π interactions. In contrast, the hydration shell of the hydrated Mg2+ is quite stable and the graphene sheet interacts with Mg2+ indirectly, mediated by water molecules, which is the cation-water-π interactions. These results lead to the anomalous order of adsorption energies for these alkaline earth cations, with hydrated Mg2+-π < hydrated Ca2+-π when the number of water molecules is large (n ≥ 6), contrary to the order observed for cation-π interactions in the absence of water molecules (n = 0). The behavior of hydrated alkaline earth cations adsorbed on a graphene surface is mainly attributed to the competition between the cation-π interactions and hydration effects. These findings provide valuable details of the structures and the adsorption energy of hydrated alkaline earth cations adsorbed onto the graphene surface.

2.
Nat Commun ; 15(1): 3218, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622151

RESUMO

Flash Joule heating (FJH) is an emerging and profitable technology for converting inexhaustible biomass into flash graphene (FG). However, it is challenging to produce biomass FG continuously due to the lack of an integrated device. Furthermore, the high-carbon footprint induced by both excessive energy allocation for massive pyrolytic volatiles release and carbon black utilization in alternating current-FJH (AC-FJH) reaction exacerbates this challenge. Here, we create an integrated automatic system with energy requirement-oriented allocation to achieve continuous biomass FG production with a much lower carbon footprint. The programmable logic controller flexibly coordinated the FJH modular components to realize the turnover of biomass FG production. Furthermore, we propose pyrolysis-FJH nexus to achieve biomass FG production. Initially, we utilize pyrolysis to release biomass pyrolytic volatiles, and subsequently carry out the FJH reaction to focus on optimizing the FG structure. Importantly, biochar with appropriate resistance is self-sufficient to initiate the FJH reaction. Accordingly, the medium-temperature biochar-based FG production without carbon black utilization exhibited low carbon emission (1.9 g CO2-eq g-1 graphene), equivalent to a reduction of up to ~86.1% compared to biomass-based FG production. Undoubtedly, this integrated automatic system assisted by pyrolysis-FJH nexus can facilitate biomass FG into a broad spectrum of applications.


Assuntos
Carbono , Carvão Vegetal , Grafite , Biomassa , Fuligem
3.
Phys Chem Chem Phys ; 26(11): 8681-8686, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38441213

RESUMO

Transition metal oxides are widely used as Fenton-like catalysts in the treatment of organic pollutants, but their synthesis usually requires a high temperature. Herein, an all-solid-state synthesis method controlled by graphene was used to prepare a double pyramid stacked CoO nano-crystal at a low temperature. The preparation temperature decreased by 200 °C (over 30% reduction) due to the introduction of graphene, largely reducing the reaction energy barrier. Interestingly, the corresponding degradation rate constants (kobs) of this graphene-supported pyramid CoO nano-crystals for organic molecules after their adsorption were over 2.5 and 35 times higher than that before adsorption and that of free CoO, respectively. This high catalytic efficiency is attributed to the adsorption of pollutants at the surface by supporting graphene layers, while free radicals activated by CoO can directly and rapidly contact and degrade them. These findings provide a new strategy to prepare low carbon-consuming transition metal oxides for highly efficient Fenton-like catalysts.

4.
J Mol Model ; 30(3): 72, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366130

RESUMO

CONTEXT: Graphene-based nanomaterial was widely used in gas sensors, detection, and separation. However, weak adsorption and low selectivity of the pristine graphene used for gas sensors are major problems. Here, using density functional theory (DFT) calculations, we reported the significant increase of four gas molecules (N2, CO2, C2H2, and C2H4) adsorption on the transition metal ion (Fe3+, Co2+, Ni2+)-modified graphene complex (Fe3+/Co2+/Ni2+-G) comparing to be absorbed on the pristine graphene (G). Moreover, the Co2+-G is suitable for the selective separation of C2H4/C2H2 due to the larger adsorption energy difference (8.5 kcal/mol) between them. The addition of transition metal ions also decreased the HOMO-LUMO gap of the systems, which benefits the enhancement of electrical conductivity. This suggests that the transition metal ion-modified graphene can be used to distinguish the different gas molecule's adsorption, facilitating the design of graphene-based gas sensors and selective separation. METHODS: All the density functional theory (DFT) calculations were performed by B3LYP with the GD3 dispersion method using Gaussian 16 software. The basis set 6-31G(d) was used for C, H, O, and N atoms, and Lanl2DZ was used for transition metal ions (Fe3+, Co2+, Ni2+). The DOS analysis and energy decomposition analysis were performed using the Multiwfn program.

5.
J Am Chem Soc ; 146(5): 3075-3085, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38174850

RESUMO

Billions of populations are suffering from the supply-demand imbalance of clean water, resulting in a global sustainability crisis. Membrane desalination is a promising method to produce fresh water from saline waters. However, conventional membranes often encounter challenges related to low water permeation, negatively impacting energy efficiency and water productivity. Herein, we achieve ultrafast desalination over the newly developed alkadiyne-pyrene conjugated frameworks membrane supported on a porous copper hollow fiber. With membrane distillation, the membrane exhibits nearly complete NaCl rejection (>99.9%) and ultrahigh fluxes (∼500 L m-2 h-1) from the seawater salinity-level NaCl solutions, which surpass the commercial polymeric membranes with at least 1 order of magnitude higher permeability. Experimental and theoretical investigations suggest that the large aspect ratio of membrane pores and the high evaporation area contribute to the high flux, and the graphene-like hydrophobic surface of conjugated frameworks exhibits complete salt exclusion. The simulations also confirm that the intraplanar pores of frameworks are impermeable for water and ions.

6.
Nano Lett ; 23(23): 10884-10891, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37976466

RESUMO

By building a thin graphene oxide membrane with Na+ self-rejection ability, high permeability, and multistage filtration strategy, we obtained fresh water from a saline solution under 1 bar of operating pressure. After five and 11 cycles of the multistage filtration, the Na+ concentration decreased from 0.6 to 0.123 mol/L (below physiological concentration) and 0.015 mol/L (fresh water), respectively. In comparison with the performance of commercial reverse osmosis membranes, energy consumption was only 10% and water flux was higher by a factor of 10. Interestingly, the energy consumption of this multistage filtration strategy is close to the theoretical lowest energy consumption. Theoretical calculations showed that such Na+ self-rejection is attributed to the lower transportation rate of the Na+ than that of water within the graphene oxide membrane for the hydrated cation-π interaction. Our findings present a viable desalination strategy for graphene-based membranes and improve the mechanistic understanding of water/ion transportation behaviors in confined spaces.

7.
Phys Chem Chem Phys ; 25(32): 21428-21435, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37538025

RESUMO

In the marine environment, Na+ ions have been the focus of attention owing to their high content, which is one of the important factors causing marine corrosion. With reference to the content of macro ions in seawater, circular iron samples were semi-immersed in 0.04 M MgCl2 and 0.6 M NaCl solutions containing different proportions of ethanol. Unexpectedly, we observed more severe corrosion effects in the gas phase region and at the gas-liquid interface of metal samples semi-immersed in the MgCl2 solution. Although the concentration of the MgCl2 solution was only 1/15 of that of the NaCl solution, the iron corrosion induced by MgCl2 was significantly more severe than that caused by NaCl when the ethanol content was increased. Mg2+ ions outperform Na+ ions in metal gas phase corrosion. Especially in the oxygen content of the gas phase corrosion product, MgCl2 caused an increase by up to 52.7%, while NaCl only resulted in a 10.3% increase. Ethanol is normally regarded as a corrosion inhibitor and exists in the liquid phase. Interestingly, in the gas phase and at the gas-liquid interface, ethanol aggravated rather than reducing iron corrosion, particularly in the presence of Mg2+ ions. In addition, we observed that Ca2+ ions produced more severe corrosion effects.

8.
J Colloid Interface Sci ; 648: 102-107, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295361

RESUMO

At ambient conditions, we found salt crystals formed from unsaturated solutions on an iron surface; these salt crystals had abnormal stoichiometries (i.e. Na2Cl and Na3Cl), and these abnormal crystals with Cl:Na of 1/2-1/3 could enhance iron corrosion. Interestingly, we found that the ratio of abnormal crystals, Na2Cl or Na3Cl, with ordinary NaCl was relative to the initial NaCl concentration of the solution. Theoretical calculations suggest that this abnormal crystallisation behaviour is attributed to the different adsorption energy curves between Cl--iron and Na+-iron, which not only promotes Na+ and Cl- adsorbing on the metallic surface to crystallise at unsaturated concentration but also induces the formation of abnormal stoichiometries of Na-Cl crystals for different kinetic adsorptionprocess. These abnormal crystals could also be observed on other metallic surfaces, such as copper. Our findings will help elucidate some fundamental physical and chemical views, including metal corrosion, crystallisation and electrochemical reactions.

9.
J Photochem Photobiol B ; 245: 112748, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354847

RESUMO

A novel croconic acid-bisindole dye CR-630 with a morpholine ring showed good water-solubility and obvious lysosome-targeting. The protonation of the nitrogen atom in the indole and lysosome-targeting of morpholine ring let it exhibit stronger pH-responsive NIR/PA imaging and photothermal effect in the lysosome acidic microenvironment (pH 4.0-5.5) than in the tumor acidic microenvironment. In the animal study, compound CR-630 could NIRF/PA image in the tumor tissues in 1.5-2.0 h, effectively inhibit the growth of the tumor, and even ablate the tumor at the drug dose of 1 mg/kg. It also demonstrated good biosafety. This study gives a new idea to develop water-solubility organic dyes with lysosome targeting, stronger pH-responsive NIRF/PA imaging and PTT for breast cancer.


Assuntos
Nanopartículas , Neoplasias , Animais , Terapia Fototérmica , Solubilidade , Fototerapia/métodos , Concentração de Íons de Hidrogênio , Morfolinas , Água , Nanopartículas/química , Linhagem Celular Tumoral , Microambiente Tumoral
10.
Phys Chem Chem Phys ; 25(19): 13260-13264, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37161531

RESUMO

Selective transport of anions across membranes has become an important goal in chemistry and biology. Here, we found an anomalous anion transfer order within the graphene oxide membrane: Cl- > Br- > F- > I-. This is at odds with the conventional ranking of the transfer order, which usually decreases as the radii of the anions increase, i.e., F- > Cl- > Br- > I-. The abnormal transportation of F- can be ascribed to the strong anion-π interactions between F- and graphene oxide sheets. Such unexpectedly strong anion-π interaction resulted in the lower movement of F- in the graphene oxide membrane and caused the anomalous anion transfer order. Our findings not only provide experimental evidence of anion-π interactions, but also improve our understanding of anion-π interactions in the selective transport of anions across a two-dimensional membrane.

11.
Chem Commun (Camb) ; 59(10): 1341-1344, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36647614

RESUMO

By a simple hydrothermal method, a phase boundary between α- and ß-Ni(OH)2 can be obtained. The Fenton-like performance of α@ß-Ni(OH)2 is 1.56 times higher than that of single ß-Ni(OH). α@ß-Ni(OH)2 displays superior stability compared to α-Ni(OH)2, ß-Ni(OH)2, and amorphous Ni(OH)2, which makes significant contributions to developing advanced catalysts in diverse fields.

12.
ACS Appl Mater Interfaces ; 14(42): 47560-47567, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36240505

RESUMO

One of the major challenges that hinder the practical application of water electrolysis lies in the design of advanced electrocatalysts toward the anodic oxygen evolution reaction (OER). In this work, a pure Co-based precatalyst of CoOOH/brownmillerite derived from the surface activation of brownmillerite by a surface acid etching method exhibits high activity and stable electrical properties toward the OER. Different from oxyhydroxide derived from in situ surface reconstruction during the electrochemical process, the growth of highly crystalline CoOOH from the brownmillerite surface enables rational control over the surface/bulk structure as well as the concentration of active sites, and this structure can be well maintained and serve as highly active sites. The catalyst shows a low overpotential of 320 mV to obtain 10 mA cm-2 and high stability in an alkaline electrolyte for the OER, which is comparable to the majority of Co-based electrocatalysts. Moreover, the appropriate interfacial interaction of the composite catalysts greatly contributes to the hydroxide insertion to improve water oxidation ability. This work proposes an effective strategy to develop high-performance metal oxide-based materials for the OER.

13.
Phys Chem Chem Phys ; 24(37): 22939-22949, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36125259

RESUMO

The structure of aqueous magnesium nitrate solution is gaining significant interest among researchers, especially whether contact ion pairs exist in concentrated solutions. Here, combining X-ray diffraction experiments, quantum chemical calculations and ab initio molecular dynamics simulations, we report that the [Mg(NO3)2] molecular structure in solution from the coexistence of a free [Mg(H2O)6]2+ octahedral supramolecular structure with a free [NO3(H2O)n]- (n = 11-13) supramolecular structure to an [Mg2+(H2O)n(NO3-)m] (n = 3, 4, 5; m = 3, 2, 1) associated structure with increasing concentration. Interestingly, two hydration modes of NO3--the nearest neighbor hydration with a hydration distance less than 3.9 Å and the next nearest neighbor hydration with hydration distance ranging from 3.9 to 4.3 Å-were distinguished. With an increase in the solution concentration, the hydrated NO3- ions lost outer layer water molecules, and the hexagonal octahedral hydration structure of [Mg(H2O)62+] was destroyed, resulting in direct contact between Mg2+ and NO3- ions in a monodentate way. As the concentration of the solution further increased, NO3- ions replaced water molecules in the hydration layer of Mg2+ to form three-ion clusters and even more complex chains or linear ion clusters.

14.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409317

RESUMO

Histidine (His) is widely involved in the structure and function of biomolecules. Transition-metal ions, such as Zn2+ and Cu2+, widely exist in biological environments, and they are crucial to many life-sustaining physiological processes. Herein, by employing density function calculations, we theoretically show that the water affinity of His can be enhanced by the strong cation-π interaction between His and Zn2+ and Cu2+. Further, the solubility of His is experimentally demonstrated to be greatly enhanced in ZnCl2 and CuCl2 solutions. The existence of cation-π interaction is demonstrated by fluorescence, ultraviolet (UV) spectroscopy and nuclear magnetic resonance (NMR) experiments. These findings are of great importance for the bioavailability of aromatic drugs and provide new insight for understanding the physiological functions of transition metal ions.


Assuntos
Cobre , Zinco , Cátions , Cobre/química , Histidina/química , Íons , Água/química , Zinco/química
15.
Langmuir ; 38(8): 2401-2408, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171618

RESUMO

Carbon-based matter, such as biomolecules and graphitic structures, often form a liquid-solid/soft matter interface in salt solution and continuously affect the surrounding cations through hydrated cation-π interactions. In this Perspective, we revisit the effect of the hydrated cation-π interactions at the interface using statistical physics, which reveals how hydrated cation-π interactions affect every component dynamically and cause a time-dependent statistical effect at the liquid-solid/soft interface. We also highlight several pieces of experimental evidence from a statistical perspective and discuss the remarkable applications related to environmental protection, industrial manufacturing, and biological sciences.


Assuntos
Cátions , Cátions/química
16.
ACS Nano ; 16(2): 2046-2053, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35137582

RESUMO

The discovery of specific matter phases with abnormal physical properties in low-dimensional systems and/or on particular substrates, such as the hexagonal phase of ice and two-dimensional (2D) CaCl with an abnormal valence state, continuously reveals more fundamental mechanisms of the nature. Alkali halides, represented by NaCl, are one of the most common compounds and usually thought to be well-understood. In the past decades, many theoretical studies suggested the existence of one particular phase, that is, the graphitic-like hexagonal phase of alkali halides at high pressure or in low-dimension states, with the expectation of improved properties of this matter phase but lacking experimental evidence due to severe technical challenges. Here, by optimized cryo-electron microscopy, we report the direct atomic-resolution observation and in situ characterization of the prevalent and stable graphitic-like alkali halide hexagonal phases, which were spontaneously formed by unsaturated NaCl and LiCl solution, respectively, in the quasi-2D confined space between reduced graphene oxide layers under ambient conditions. Combined with a control experiment, density functional theory calculations, and previous theoretical studies, we believe that a delicate balance among the cation-π interaction of the solute and substrate, electrostatic interactions of anions and cations, solute-solvent interactions, and thermodynamics under confinement synergistically results in the formation of such hexagonal crystalline phases. These findings highlight the effects of the substrate and the confined space on the formation of specific matter phases and provide a universal scheme for the preparation of special graphitic-like hexagonal phases of alkali halides.

17.
Adv Sci (Weinh) ; 9(3): e2103773, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34784105

RESUMO

Electrocatalysis is critical to the performance displayed by sulfur cathodes. However, the constituent electrocatalysts and the sulfur reactants have vastly different molecular sizes, which ultimately restrict electrocatalysis efficiency and hamper device performance. Herein, the authors report that aggregates of cobalt single-atom catalysts (SACs) attached to graphene via porphyrins can overcome the challenges associated with the catalyst/reactant size mismatch. Atomic-resolution transmission electron microscopy and X-ray absorption spectroscopy measurements show that the Co atoms present in the SAC aggregates exist as single atoms with spatially resolved dimensions that are commensurate the sulfur species found in sulfur cathodes and thus fully accessible to enable 100% atomic utilization efficiency in electrocatalysis. Density functional theory calculations demonstrate that the Co SAC aggregates can interact with the sulfur species in a synergistic manner that enhances the electrocatalytic effect and promote the performance of sulfur cathodes. For example, Li-S cells prepared from the Co SAC aggregates exhibit outstanding capacity retention (i.e., 505 mA h g-1 at 0.5 C after 600 cycles) and excellent rate capability (i.e., 648 mA h g-1 at 6 C). An ultrahigh area specific capacity of 12.52 mA h cm-2 is achieved at a high sulfur loading of 11.8 mg cm-2 .

18.
Natl Sci Rev ; 8(7): nwaa274, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34691690

RESUMO

Under ambient conditions, the only known valence state of calcium ions is +2, and the corresponding crystals with calcium ions are insulating and nonferromagnetic. Here, using cryo-electron microscopy, we report direct observation of two-dimensional (2D) CaCl crystals on reduced graphene oxide (rGO) membranes, in which the calcium ions are only monovalent (i.e. +1). Remarkably, metallic rather than insulating properties are displayed by those CaCl crystals. More interestingly, room-temperature ferromagnetism, graphene-CaCl heterojunction, coexistence of piezoelectricity-like property and metallicity, as well as the distinct hydrogen storage and release capability of the CaCl crystals in rGO membranes are experimentally demonstrated. We note that such CaCl crystals are obtained by simply incubating rGO membranes in salt solutions below the saturated concentration, under ambient conditions. Theoretical studies suggest that the formation of those abnormal crystals is attributed to the strong cation-π interactions of the Ca cations with the aromatic rings in the graphene surfaces. The findings highlight the realistic potential applications of such abnormal CaCl material with unusual electronic properties in designing novel transistors and magnetic devices, hydrogen storage, catalyzers, high-performance conducting electrodes and sensors, with a size down to atomic scale.

19.
Phys Chem Chem Phys ; 23(27): 14662-14670, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34213518

RESUMO

Cation-π interactions are essential for many chemical, biological, and material processes, and these processes usually involve an aqueous salt solution. However, there is still a lack of a full understanding of the hydrated cation-π interactions between the hydrated cations and the aromatic ring structures on the molecular level. Here, we report a molecular picture of hydrated cation-π interactions, by using the calculations of density functional theory (DFT). Specifically, the graphene sheet can distort the hydration shell of the hydrated K+ to interact with K+ directly, which is hereafter called water-cation-π interactions. In contrast, the hydration shell of the hydrated Li+ is quite stable and the graphene sheet interacts with Li+ indirectly, mediated by water molecules, which we hereafter call the cation-water-π interactions. The behavior of hydrated cations adsorbed on a graphene surface is mainly attributed to the competition between the cation-π interactions and hydration effects. These findings provide valuable details of the structures and the adsorption energy of hydrated cations adsorbed onto the graphene surface.

20.
ACS Appl Mater Interfaces ; 12(34): 38638-38646, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32805956

RESUMO

Metals are widely used, from daily life to modern industry. Great efforts have been made to protect the metals with various coatings. However, the well-known conventional electrochemical corrosion induced by cations and the ubiquitous nature of the coffee-ring effect make these processes very difficult. Here, a scheme by two bridges of cations and ethylenediamine (EDA) is proposed to overcome the coffee-ring effect and electrochemical corrosion and experimentally achieve uniform, anticorrosive, and antiabrasive coatings on metallic surfaces. Anticorrosive capability reaches about 26 times higher than that without cation-controlled coatings at 12 h in extremely acidic, high-temperature, and high-humidity conditions and still enhances to 2.7 times over a week. Antiabrasive capability also reaches 2.5 times. Theoretical calculations show that the suspended materials are uniformly adsorbed on the surface mediated by complexed cations through strong cation-metal and cation-π interactions. Notably, the well-known conventional electrochemical corrosion induced by cations is avoided by EDA to control cations solubility in different coating processes. These findings provide a new efficient, cost-effective, facile, and scalable method to fabricate protective coatings on metallic materials and a methodology to study metallic nanostructures in solutions, benefitting practical applications including coatings, printing, dyeing, electrochemical protection, and biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA