Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 212: 118096, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085842

RESUMO

The microcosmic mechanisms underlying filamentous bulking remain unclear. The role of extracellular polymeric substances (EPS) governed by quorum sensing (QS) in deteriorating sludge floc stability and structure during filamentous bulking and the feasibility of using quorum quenching (QQ) to maintain sludge floc stability and structure and sludge settling were investigated in this study. The results indicated that the concentration of C6HSL increased from 22.08±3.22 ng/g VSS to 81.42±5.98 ng/g VSS during filamentous bulking. The filamentous bacteria gradually evolved the hdtS gene related to the synthesis of C6HSL with increases in the population density. Triggered QS by filamentous bacteria proliferation induced variation in the composition and structure of EPS within the sludge flocs. The proteins (PN) content of the EPS increased evidently from 40.06 ± 2.41 mg/g VSS to 110.32 ± 4.32 mg/g VSS, and the polysaccharides (PS) content slightly increased during filamentous bulking. The upregulated proteins in the EPS led to a decrease in the relative hydrophobicity of the sludge and an increase in negative surface charge. The α-helix/(ß-sheet+random coil) ratio evidently increased from 0.76 to 0.99 during filamentous bulking, revealing that the proteins were tightly structured, which prevented the exposure of inner hydrophobic groups. The total energy of the interaction (WT) between bacteria increased during sludge bulking, which resulted in the weakening of sludge aggregation. Variation in the physicochemical properties of EPS induced by QS in the filamentous bacteria markedly restrained adhesion between the filamentous bacteria and floc-forming bacteria. The production of PN in the EPS and the expression of the hdtS gene were inhibited by vanillin, which served as a QS inhibitor. The WT between bacteria with 50 mg/L of vanillin basically did not change. Filamentous bulking was significantly inhibited by the addition of vanillin. Therefore, QQ is a potential strategy for the prevention and control of filamentous bulking. This study provides new information regarding the microcosmic mechanisms of filamentous bulking.


Assuntos
Percepção de Quorum , Esgotos , Bactérias , Reatores Biológicos , Interações Hidrofóbicas e Hidrofílicas , Eliminação de Resíduos Líquidos
2.
Environ Sci Pollut Res Int ; 26(20): 20499-20509, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31102210

RESUMO

Drinking water containing environmental endocrine disruptor compounds (EDCs) endangers human health, and researching the purification process of drinking water for the effective removal of EDCs is vitally important. Filtering plays a crucial role in the bio-adsorption of EDCs, but the adsorption mechanism that occurs between the EDCs and filters remains unclear. In this study, a quartz crystal microbalance (QCM) was employed to elucidate the adsorption mechanism because QCM is a label-free method that possesses high selectivity, high stability, and high sensitivity. The results indicated that a pseudo-first-order kinetic model best fits the adsorption process of four different EDCs, which included bisphenol A (BPA), estrone (E1), estradiol (E2), and sulfamethoxazole (SMZ), on silica (quartz sand), a typical filter material surface. The order of the amount of individual EDCs absorbed on the silica surface was qE2 > qE1 > qSMZ > qBPA and related to their molecular structure, polarity, and chargeability. As the initial EDC concentration increased, the adsorbed amount of the four EDCs on the silica surface increased; however, the initial concentration had little effect on removal efficiency. The calculated Freundlich exponent (1/n) demonstrated SMZ and BPA showed a greater tendency for adsorption than E1 and E2. The mass response time on the surface of the silica gradually increased as the pH increased (from 5.5 to 8.5), indicating the adsorption rate was inhibited by the increase in pH. The addition of electrolytes shortened the mass response time of EDCs on the QCM chip. The pH and ionic strength produced no significant effects on adsorption because hydrophobicity was the primary contributor to adsorption. This study facilitated a better understanding of the interaction between EDCs and filters in water treatment.


Assuntos
Disruptores Endócrinos/isolamento & purificação , Técnicas de Microbalança de Cristal de Quartzo/métodos , Adsorção , Compostos Benzidrílicos/química , Compostos Benzidrílicos/isolamento & purificação , Disruptores Endócrinos/química , Estradiol/química , Estradiol/isolamento & purificação , Estrona/química , Estrona/isolamento & purificação , Filtração/métodos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Concentração Osmolar , Fenóis/química , Fenóis/isolamento & purificação , Quartzo , Sulfametoxazol/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos
3.
Molecules ; 20(9): 16709-22, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26389868

RESUMO

A pH-dependence of the Brønsted acid-catalyzed oxidation of sulfides to the corresponding sulfoxides with H2O2 is reported for the first time based on our systematic investigation of the catalytic performance of a series of Brønsted acids. For all of the Brønsted acids investigated, the catalytic performances do not depend on the catalyst loading (mol ratio of Brønsted acid to substrate), but rather depend on the pH value of the aqueous reaction solution. All of them can give more than 98% conversion and selectivity in their aqueous solution at pH 1.30, no matter how much the catalyst loading is and what the Brønsted acid is. This pH-dependence principle is a very novel perspective to understand the Brønsted-acid catalysis system compared with our common understanding of the subject.


Assuntos
Ácidos/química , Peróxido de Hidrogênio/química , Oxidantes/química , Sulfetos/química , Água/química , Catálise , Concentração de Íons de Hidrogênio , Oxirredução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA