Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 801443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251079

RESUMO

Elevated CO2 concentration [e(CO2)] often promotes plant growth with a decrease in tissue N concentration. In this study, three experiments, two under hydroponic and one in well-watered soil, including various levels or patterns of CO2, humidity, and N supply were conducted on wheat (Triticum aestivum L.) to explore the mechanisms of e[CO2]-induced N deficiency (ECIND). Under hydroponic conditions, N uptake remained constant even as transpiration was limited 40% by raising air relative humidity and only was reduced about 20% by supplying N during nighttime rather than daytime with a reduction of 85% in transpiration. Compared to ambient CO2 concentration, whether under hydroponic or well-watered soil conditions, and whether transpiration was kept stable or decreased to 12%, e[CO2] consistently led to more N uptake and higher biomass, while lower N concentration was observed in aboveground organs, especially leaves, as long as N supply was insufficient. These results show that, due to compensation caused by active uptake, N uptake can be uncoupled from water uptake under well-watered conditions, and changes in transpiration therefore do not account for ECIND. Similar or lower tissue NO 3 - -N concentration under e[CO2] indicated that NO 3 - assimilation was not limited and could therefore also be eliminated as a major cause of ECIND under our conditions. Active uptake has the potential to bridge the gap between N taken up passively and plant demand, but is limited by the energy required to drive it. Compared to ambient CO2 concentration, the increase in N uptake under e[CO2] failed to match the increase of carbohydrates, leading to N dilution in plant tissues, the apparent dominant mechanism explaining ECIND. Lower N concentration in leaves rather than roots under e[CO2] validated that ECIND was at least partially also related to changes in resource allocation, apparently to maintain root uptake activity and prevent more serious N deficiency.

2.
PLoS One ; 12(7): e0180713, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686687

RESUMO

BACKGROUND AND AIMS: Water-saving ground cover rice production systems (GCRPS) are gaining popularity in many parts of the world. We aimed to describe the characteristics of root growth, morphology, distribution, and water uptake for a GCRPS. METHODS: A traditional paddy rice production system (TPRPS) was compared with GCRPS in greenhouse and field experiments. In the greenhouse, GCRPS where root zone average soil water content was kept near saturation (GCRPSsat), field capacity (GCRPSfwc) and 80% field capacity (GCRPS80%), were evaluated. In a two-year field experiment, GCRPSsat and GCRPS80% were applied. RESULTS: Similar results were found in greenhouse and field experiments. Before mid-tillering the upper soil temperature was higher for GCRPS, leading to enhanced root dry weight, length, surface area, specific root length, and smaller diameter of roots but lower water uptake rate per root length compared to TPRPS. In subsequent growth stages, the reduced soil water content under GCRPS caused that the preponderance of root growth under GCRPSsat disappeared in comparison to TPRPS. Under other GCRPS treatments (GCRPSfwc and GCRPS80%), significant limitation on root growth, bigger root diameter and higher water uptake rate per root length were found. CONCLUSIONS: Discrepancies in soil water and temperature between TPRPS and GCRPS caused adjustments to root growth, morphology, distribution and function. Even though drought stress was inevitable after mid-tillering under GCRPS, especially GCRPS80%, similar or even enhanced root water uptake capacity in comparison to TPRPS might promote allocation of photosynthetic products to shoots and increase water productivity.


Assuntos
Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Secas , Oryza/metabolismo , Fotossíntese/fisiologia , Solo/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA