Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 250: 108106, 2024 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-39306098

RESUMO

Mycotoxins are toxic secondary metabolites produced by different fungal species under specific environmental conditions. The common and regulated mycotoxins are such as deoxynivalenol (DON), zearalenone (ZEN), ochratoxin (OTA), aflatoxin B1 (AFB1), and fumonisins (FB). These mycotoxins are highly regulated in feed and food because their effects start to exert from their lowest exposures and are abundant in our common environment. However, there are other emerging mycotoxins such as apicidin, beauvericin, aurofusarin, and enniatins which are also harmful. Thus, making a total of around 500 forms of mycotoxins. The existence of mycotoxins in feed and food has a significant impact on animal and human health, which ultimately, slows down economic growth globally. According to this review, different approaches to removing multi-mycotoxin separately or simultaneously have been stated. Mostly, the review focused on the simultaneous removal of different multiple mycotoxins. This is because the current studies show a growing trend in reporting the co-existence of multiple mycotoxins in feed and food materials, however, most detoxifying approaches are for singular mycotoxins. Therefore, the physical, chemical, and biological approaches to remove multi-mycotoxin have been elucidated as well as their advantages and limitations. Furthermore, the authors give suggestions on the way forward to reduce exposure to mycotoxins and diminish their health effects in society. Lastly, the authors emphasized introducing more stringent limits for co-existing mycotoxins, especially those that have the same health effects by acting synergistically, such as AFB1 and OTA, which both act as carcinogenic agents.


Assuntos
Contaminação de Alimentos , Micotoxinas , Animais , Humanos , Ração Animal
2.
J Agric Food Chem ; 72(6): 3025-3035, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300990

RESUMO

Zearalenone (ZEN) is a widespread mycotoxin that causes serious damage to animal husbandry and poses a threat to human health. A screen of ZEN-degrading soil bacteria yielded Bacillus subtilis YT-4, which yielded 80% ZEN degradation after 6 h and 95% after 36 h. The gene sequence encoding the degradative enzyme ZENY was mined from the genome of YT-4 and expressed in yeast. ZENY is an α/ß-hydrolase with an optimal enzyme activity at 37 °C and pH 8. By breaking the lactone ring of ZEN, it produces ZENY-C18H24O5 with a molecular weight of 320.16 g/mol. Sequence comparison and molecular docking analyses identified the catalytic ZENY triad 99S-245H-123E and the primary ZEN-binding mode within the hydrophobic pocket of the enzyme. To improve the thermal stability of the enzyme for industrial applications, we introduced a mutation at the N-terminus, specifically replacing the fifth residue N with V, and achieved a 25% improvement in stability at 45 °C. These findings aim to achieve ZEN biodegradation and provide insight into the structure and function of ZEN hydrolases.


Assuntos
Zearalenona , Animais , Humanos , Zearalenona/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Simulação de Acoplamento Molecular , Hidrolases/genética , Mutação
3.
Polymers (Basel) ; 12(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936846

RESUMO

A hydrotrope-based pretreatment, benzenesulfonic acid (BA) pretreatment, was used to fractionate bamboo in this work. With optimized content (80 wt %) of BA in pretreatment liquor, about 90% of lignin and hemicellulose could be removed from bamboo under mild conditions (95 °C, 30 min or 80 °C, 60 min). The potential accessibility of BA pretreated substrate to cellulase was thus significantly improved and was also found to be much higher than those of acidic ethanol and dilute acid pretreatments. But the deposition of lignin on the surface of solid substrates, especially the BA pretreated substrate, was also observed, which showed a negative effect on the enzymatic hydrolysis efficiency. The addition of inexpensive soy protein, a bio-based lignin-shielding agent, could readily overcome this negative effect, leading the increase of enzymatic conversion of cellulose in BA pretreated substrate from 37% to 92% at a low cellulase loading of 4 FPU/g glucan. As compared to acidic ethanol and dilute acid pretreatments, the combination of BA pretreatment and soy protein could not only stably improve the efficiency of non-cellulose components removal, but also could significantly reduce the loading of cellulase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA