Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci China Life Sci ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38748354

RESUMO

Dynamic crosstalk between the embryo and mother is crucial during implantation. Here, we comprehensively profile the single-cell transcriptome of pig peri-implantation embryos and corresponding maternal endometrium, identifying 4 different lineages in embryos and 13 cell types in the endometrium. Cell-specific gene expression characterizes 4 distinct trophectoderm subpopulations, showing development from undifferentiated trophectoderm to polar and mural trophectoderm. Dynamic expression of genes in different types of endometrial cells illustrates their molecular response to embryos during implantation. Then, we developed a novel tool, ExtraCellTalk, generating an overall dynamic map of maternal-foetal crosstalk using uterine luminal proteins as bridges. Through cross-species comparisons, we identified a conserved RBP4/STRA6 pathway in which embryonic-derived RBP4 could target the STRA6 receptor on stromal cells to regulate the interaction with other endometrial cells. These results provide insight into the maternal-foetal crosstalk during embryo implantation and represent a valuable resource for further studies to improve embryo implantation.

2.
Antioxidants (Basel) ; 13(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38539881

RESUMO

Recent studies have established that exosomes (EXs) derived from follicular fluid (FF) can promote oocyte development. However, the specific sources of these EXs and their regulatory mechanisms remain elusive. It is universally acknowledged that oocyte development requires signal communication between granulosa cells (GCs) and oocytes. However, the role of GC-secreted EXs and their functions are poorly understood. This study aimed to investigate the role of porcine granulosa-cell-derived exosomes (GC-EXs) in oocyte development. In this study, we constructed an in vitro model of porcine GCs and collected and identified GC-EXs. We confirmed that porcine GCs can secrete EXs and investigated the role of GC-EXs in regulating oocyte development by supplementing them to cumulus-oocyte complexes (COCs) cultured in vitro. Specifically, GC-EXs increase the cumulus expansion index (CEI), promote the expansion of the cumulus, alleviate reactive oxygen species (ROS), and increase mitochondrial membrane potential (MMP), resulting in improved oocyte development. Additionally, we conducted small RNA sequencing of GC-EXs and hypothesized that miR-148a-3p, the highest-expressed microRNA (miRNA), may be the key miRNA. Our study determined that transfection of miR-148a-3p mimics exerts effects comparable to the addition of EXs. Meanwhile, bioinformatics prediction, dual luciferase reporter gene assay, and RT-qPCR identified DOCK6 as the target gene of miR-148a-3p. In summary, our results demonstrated that GC-EXs may improve oocyte antioxidant capacity and promote oocyte development through miR-148a-3p by targeting DOCK6.

3.
Animals (Basel) ; 13(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37889685

RESUMO

Oocytes matured in vitro are useful for assisted human and farm animal reproduction. However, the quality of in vitro matured oocytes is usually lower than that of in vivo matured oocytes, possibly due to the absence of some important signal regulators in vitro. In this study, untargeted metabolomics was used to detect the changes in the metabolites in the follicular fluid (FF) during in vivo pig oocyte maturation and in the culture medium during in vitro maturation. Our results showed that the total metabolite changing profile of the in vivo FF was different from that of the in vitro maturation medium, but the levels of 23 differentially expressed metabolites (DEMs) changed by following the same trend during both in vivo and in vitro pig oocyte maturation. These 23 metabolites may be important regulators of porcine oocyte maturation. We found that progesterone and androstenedione, two factors in the ovarian steroidogenesis pathway enriched from the DEMs, were upregulated in the FF during in vivo pig oocyte maturation. The levels of these two factors were 31 and 20 fold, respectively, and they were higher in the FF than in the culture medium at the oocyte mature stage. The supplementation of progesterone and androstenedione during in vitro maturation significantly improved the pig oocyte maturation rate and subsequent embryo developmental competence. Our finding suggests that a metabolic abnormality during in vitro pig oocyte maturation affects the quality of the matured oocytes. This study identified some important metabolites that regulate oocyte maturation and their developmental potential, which will be helpful to improve assisted animal and human reproduction.

4.
J Nanobiotechnology ; 21(1): 79, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882792

RESUMO

Most pregnancy losses worldwide are caused by implantation failure for which there is a lack of effective therapeutics. Extracellular vesicles are considered potential endogenous nanomedicines because of their unique biological functions. However, the limited supply of ULF-EVs prevents their development and application in infertility diseases such as implantation failure. In this study, pigs were used as a human biomedical model, and ULF-EVs were isolated from the uterine luminal. We comprehensively characterized the proteins enriched in ULF-EVs and revealed their biological functions in promoting embryo implantation. By exogenously supplying ULF-EVs, we demonstrated that ULF-EVs improve embryo implantation, suggesting that ULF-EVs are a potential nanomaterial to treat implantation failure. Furthermore, we identified that MEP1B is important in improving embryo implantation by promoting trophoblast cell proliferation and migration. These results indicated that ULF-EVs can be a potential nanomaterial to improve embryo implantation.


Assuntos
Vesículas Extracelulares , Nanoestruturas , Humanos , Feminino , Gravidez , Animais , Suínos , Útero , Proliferação de Células , Implantação do Embrião
5.
Molecules ; 27(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296422

RESUMO

The quality of in vitro matured oocytes is inferior to that of in vivo matured oocytes, which translates to low developmental capacity of embryos derived from in vitro matured oocytes. The developmental potential of in vitro matured oocytes is usually impaired due to oxidative stress. Stromal cell-derived factor-l (SDF1) can reduce oxidative stress and inhibit apoptosis. The aim of this study was to investigate the effects of SDF1 supplementation during pig oocyte in vitro maturation (IVM) on subsequent embryo development, and to explore the acting mechanisms of SDF1 in pig oocytes. We found that the IVM medium containing 20 ng/mL SDF1 improved the maturation rate of pig oocytes, as well as the cleavage rate and blastocyst rate of embryos generated by somatic cell nuclear transfer, in vitro fertilization, and parthenogenesis. Supplementation of 20 ng/mL SDF1 during IVM decreased the ROS level, increased the mitochondrial membrane potential, and altered the expression of apoptosis-related genes in the pig oocytes. The porcine oocyte transcriptomic data showed that SDF1 addition during IVM altered the expression of genes enriched in the purine metabolism and TNF signaling pathways. SDF1 supplementation during pig oocyte IVM also upregulated the mRNA and protein levels of YY1 and TET1, two critical factors for oocyte development. In conclusion, supplementation of SDF1 during pig oocyte IVM reduces oxidative stress, changes expression of genes involved in regulating apoptosis and oocyte growth, and enhances the ability of in vitro matured pig oocytes to support subsequent embryo development. Our findings provide a theoretical basis and a new method for improving the developmental potential of pig in vitro matured oocytes.


Assuntos
Desenvolvimento Embrionário , Técnicas de Maturação in Vitro de Oócitos , Suínos , Animais , Técnicas de Maturação in Vitro de Oócitos/métodos , Espécies Reativas de Oxigênio/farmacologia , Suplementos Nutricionais , RNA Mensageiro , Purinas/farmacologia
6.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142269

RESUMO

Black coat color in pigs is determined by the dominant E allele at the MC1R locus. Through comparing MC1R gene sequences between recessive e and dominant ED1 alleles, we identified four missense mutations that could affect MC1R protein function for eumelanin synthesis. With the aim of devising a genetic modification method for pig coat color manipulation, we mutated the e allele in the Duroc breed to the dominant ED1 allele using CRISPR-mediated homologous recombination for the four mutation substitutions at the MC1R locus. The MC1R-modified Duroc pigs generated using the allele replacement strategy displayed uniform black coat color across the body. A genotyping assay showed that the MC1R-modified Duroc pigs had a heterozygous ED1/e allele at the MC1R locus; in addition, the pigs remained in the Duroc genetic background. Our work offers a gene editing method for pig coat color manipulation, which could value the culture of new pig varieties meeting the needs of diversified market.


Assuntos
Edição de Genes , Receptor Tipo 1 de Melanocortina , Alelos , Animais , Cor de Cabelo/genética , Mutação , Fenótipo , Receptor Tipo 1 de Melanocortina/genética , Suínos/genética
7.
Anim Reprod Sci ; 244: 107049, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35930939

RESUMO

Since pig was successfully cloned in 2000, somatic cell nuclear transfer (SCNT) became a promising technique in preserving and expanding the genetics of superior boars. Assessing the safety, growth performance, and reproductive performance of cloned pigs and their progeny is critical for their wide application. In this study, three superior Duroc boars were used to construct 61,736 SCNT-cloned embryos. The semen quality and reproductive performance of the cloned Duroc pigs and the growth performances of their progeny were evaluated. Results showed that the cloned pigs derived from superior boars produced semen with normal quality and exhibited similar reproductive performance as the donor boars, whose progenies showed greater growth performance than those derived from non-cloned pigs under the same feed condition. The results shed light on the application of cloning technology in the conservation and expansion of the genetic resources of Duroc pigs.


Assuntos
Clonagem de Organismos , Análise do Sêmen , Animais , Clonagem de Organismos/métodos , Clonagem de Organismos/veterinária , Masculino , Técnicas de Transferência Nuclear/veterinária , Reprodução/genética , Sêmen , Análise do Sêmen/veterinária , Suínos/genética
8.
Cells ; 11(15)2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35954224

RESUMO

Farm animal salivary glands hold great potential as efficient bioreactors for production of human therapeutic proteins. Nerve growth factor (NGF) is naturally expressed in animal salivary glands and has been approved for human clinical treatment. This study aims to employ transgenic (TG) pig salivary gland as bioreactors for efficient synthesis of human NGF (hNGF). hNGF-TG pigs were generated by cloning in combination with piggyBac transposon-mediated gene transfer. These hNGF-TG pigs specifically expressed hNGF protein in their salivary glands and secreted it at high levels into saliva. Surgical and nonsurgical approaches were developed to efficiently collect saliva from hNGF-TG pigs. hNGF protein was successfully purified from collected saliva and was verified to be biologically active. In an additional step, the double-transgenic pigs, where the endogenous porcine NGF (pNGF) gene was replaced by another copy of hNGF transgene, were created by cloning combined with CRISPR/Cas9-mediated homologous recombination. These double-transgenic pigs expressed hNGF but not pNGF, thus avoiding possible "contamination" of hNGF with pNGF protein during purification. In conclusion, TG pig salivary glands can be used as robust bioreactors for a large-scale synthesis of functional hNGF or other valuable proteins. This new animal pharming method will benefit both human health and biomedicine.


Assuntos
Fator de Crescimento Neural , Glândulas Salivares , Animais , Animais Geneticamente Modificados , Reatores Biológicos , Humanos , Fator de Crescimento Neural/metabolismo , Glândulas Salivares/metabolismo , Suínos , Transgenes
9.
Cell Reprogram ; 24(4): 175-185, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35861708

RESUMO

The oocyte in vitro maturation (IVM) technique is important in animal husbandry, biomedicine, and human-assisted reproduction. However, the developmental potential of in vitro matured oocytes is usually lower than that of in vivo matured (IVVM) oocytes. Amphiregulin (AREG) is an EGF-like growth factor that plays critical roles in the maturation and development of mammalian oocytes. This study investigated the effects of AREG supplementation during pig oocyte IVM on the subsequent development of cloned embryos. The addition of AREG to pig oocyte IVM medium improved the developmental competence of treated oocyte-derived cloned embryos by enhancing the expansion and proliferation of cumulus cells (CCs) during IVM. The positive effect of AREG on enhancing the quality of IVVM pig oocytes might be due to the activation of proliferation-related pathways in CCs by acting on the AREG receptor. The present study provides an AREG treatment-based method to improve the developmental competence of cloned pig embryos.


Assuntos
Células do Cúmulo , Técnicas de Maturação in Vitro de Oócitos , Anfirregulina/metabolismo , Anfirregulina/farmacologia , Animais , Proliferação de Células , Suplementos Nutricionais , Feminino , Humanos , Técnicas de Maturação in Vitro de Oócitos/métodos , Mamíferos , Oócitos , Suínos
10.
Theriogenology ; 178: 8-17, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34735978

RESUMO

Successful implantation of porcine conceptus requires synergistic interaction with various signal molecules in the maternal uterus. Extracellular vesicles (EVs) in uterine luminal fluid (ULF) of mice play important roles in conceptus development. However, studies have not explored the roles of extracellular vesicles (EV) in ULF of pigs. The aim of this study was to identify characteristics, origin, and roles of ULF-derived EVs on day 9 of the estrous cycle and on day 9,12 and 15 of pregnancy in pigs. Western blot, BCA assay and HE staining analysis showed increase in EVs concentration in ULF began from day 12 of pregnancy. Immunofluorescence staining and transmission electron microscopy analysis showed that EVs were mainly derived from endometrial epithelial cells. Fluorescent labeling, CCK-8 and transwell migration assays showed that these EVs were delivered to the trophoblast or parthenogenetic activation embryos to regulate proliferation and migration of trophoblast cells. A total of 305 miRNAs were identified using small RNA sequencing analysis. Functional enrichment analysis showed that miRNAs in these EVs potentially play vital regulatory functions in EV transportation or conceptus implantation. QRT-PCR analysis was used to further verify the RNA-seq data. The findings of this study provide information on the functions of porcine ULF-derived EVs and provide a reference dataset for future translational studies on porcine ULF-derived EVs.


Assuntos
Implantação do Embrião , Vesículas Extracelulares , Animais , Embrião de Mamíferos , Endométrio , Feminino , Camundongos , Gravidez , Suínos , Útero
11.
Animals (Basel) ; 11(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34827794

RESUMO

Cloned animals generated by the somatic cell nuclear transfer (SCNT) approach are valuable for the farm animal industry and biomedical science. Nevertheless, the extremely low developmental efficiency of cloned embryos hinders the application of SCNT. Low developmental competence is related to the higher apoptosis level in cloned embryos than in fertilization-derived counterparts. Interleukin 17D (IL17D) expression is up-regulated during early mouse embryo development and is required for normal development of mouse embryos by inhibiting apoptosis. This study aimed to investigate whether IL17D plays roles in regulating pig SCNT embryo development. Supplementation of IL17D to culture medium improved the developmental competence and decreased the cell apoptosis level in cloned porcine embryos. The transcriptome data indicated that IL17D activated apoptosis-associated pathways and promoted global gene expression at embryonic genome activation (EGA) stage in treated pig SCNT embryos. Treating pig SCNT embryos with IL17D up-regulated expression of GADD45B, which is functional in inhibiting apoptosis and promoting EGA. Overexpression of GADD45B enhanced the developmental efficiency of cloned pig embryos. These results suggested that IL17D treatment enhanced the developmental ability of cloned pig embryos by suppressing apoptosis and promoting EGA, which was related to the up-regulation of GADD45B expression. This study demonstrated the roles of IL17D in early development of porcine SCNT embryos and provided a new approach to improve the developmental efficiency of cloned porcine embryos.

12.
Front Genet ; 12: 631071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747047

RESUMO

We previously generated transgenic pigs with enhanced growth rate and reduced nutrient loss. However, the composition of their gut microbiome is unknown. In this study, we successfully generated EGFP marker-free transgenic (MF-TG) pigs with high expression levels of microbial ß-glucanase, xylanase, and phytase in the parotid gland. We collected intestinal contents from the ileum, cecum and colon of five MF-TG and five wild-type (WT) sows and investigated the gut microbiome of the transgenic pigs via metagenomic analysis. Results showed that the levels of probiotics, such as Lactobacillus reuteri and Streptococcus, were more abundant in the cecum of the MF-TG pigs and higher than those of WT pigs. By contrast, the levels of harmful microorganisms, such as Campylobacter, Chlamydia trachomatis, and Campylobacter fetus, and various unidentified viruses, were higher in the cecum of the WT pigs than those of the MF-TG pigs. By comparing unigenes and the eggNOG database, we found that the microorganisms in the colon of the MF-TG pigs had high fractional abundance in DNA (cytosine-5)-methyltransferase 1 and serine-type D-Ala-D-Ala carboxypeptidase, whereas the aspartate carbamoyltransferase regulatory subunit and outer membrane protein pathways were enriched in the WT pigs. Moreover, the microorganisms in the cecum of the MF-TG pigs were active in GlycosylTransferase Family 8 (GT8), Glycoside Hydrolase Family 13 (GH13), and Glycoside Hydrolase Family 32 (GH32). Furthermore, the levels of numerous carbohydrases, such as glucan 1,3-beta-glucosidase, xylan 1,4-beta-xylosidase and exo-1,3-1,4-glucanase, were higher in the cecum of the MF-TG pigs than those of the WT pigs. The results indicated that intestinal microbes can change adaptively to the secretion of transgenic enzymes, thereby forming a benign cooperation with their host. This cooperation could be beneficial for improving feed efficiency.

13.
Mol Reprod Dev ; 88(3): 228-237, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33650239

RESUMO

Ectopic expression of Xist on the putative active X chromosome is a primary cause of the low developmental efficiency of cloned mouse and pig embryos. Suppression of abnormal Xist expression via gene knockout or RNA interference (RNAi) can significantly enhance the developmental competence of cloned mouse and pig embryos. RLIM is a Xist expression activator, whereas REX1 is an Xist transcription inhibitor, as RLIM triggers Xist expression by mediating the proteasomal degradation of REX1 to induce imprinted and random X chromosome inactivation in mice. This study aimed to test whether the knockdown of RLIM and overexpression of REX1 can repress aberrant Xist expression and improve the developmental ability of cloned male pig embryos. Results showed that injection of anti-RLIM small interfering RNA significantly decreased Xist messenger RNA abundance, increased REX1 protein level, and enhanced the preimplantation development of cloned male porcine embryos. These positive effects were not observed in cloned male pig embryos injected with REX1 expression plasmid, which might be due to the low expression efficiency of injected REX1 plasmid and/or the short half-life of expressed REX1 protein. The findings from this study indicated that RLIM participated in the ectopic activation of Xist expression in cloned pig embryos by targeting REX1 degradation. Furthermore, this study provided a new method to improve cloned pig embryo development by the inhibition of Xist expression via RNAi of RLIM.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , RNA Longo não Codificante/genética , Ubiquitina-Proteína Ligases/genética , Animais , Clonagem de Organismos , Técnicas de Silenciamento de Genes , Masculino , Técnicas de Transferência Nuclear , RNA Longo não Codificante/metabolismo , Suínos , Ubiquitina-Proteína Ligases/metabolismo
14.
Front Genet ; 11: 597841, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329743

RESUMO

The current challenges facing the pork industry are to maximize feed efficiency and minimize fecal emissions. Unlike ruminants, pigs lack several digestive enzymes such as pectinase, xylanase, cellulase, ß-1.3-1.4-glucanase, and phytase which are essential to hydrolyze the cell walls of grains to release endocellular nutrients into their digestive tracts. Herein, we synthesized multiple cellulase and pectinase genes derived from lower organisms and then codon-optimized these genes to be expressed in pigs. These genes were then cloned into our previously optimized XynB (xylanase)- EsAPPA (phytase) bicistronic construct. We then successfully generated transgenic pigs that expressed the four enzymes [Pg7fn (pectinase), XynB (xylanase), EsAPPA (phytase), and TeEGI (cellulase and ß-glucanase)] using somatic cell cloning. The expression of these genes was parotid gland specific. Enzymatic assays using the saliva of these founders demonstrated high levels of phytase (2.0∼3.4 U/mL) and xylanase (0.25∼0.42 U/mL) activities, but low levels of pectinase (0.06∼0.08 U/mL) activity. These multi-transgenic pigs are expected to contribute to enhance feed utilization and reduce environmental impact.

15.
Animals (Basel) ; 10(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171943

RESUMO

How to maximize the use of the genetic merits of the high-ranking boars (also called superior ones) is a considerable question in the pig breeding industry, considering the money and time spent on selection. Somatic cell nuclear transfer (SCNT) is one of the potential ways to answer the question, which can be applied to produce clones with genetic resources of superior boar for the production of commercial pigs. For practical application, it is essential to investigate whether the clones and their progeny keep behaving better than the "normal boars", considering that in vitro culture and transfer manipulation would cause a series of harmful effects to the development of clones. In this study, 59,061 cloned embryos were transferred into 250 recipient sows to produce the clones of superior Pietrain boars. The growth performance of 12 clones and 36 non-clones and the semen quality of 19 clones and 28 non-clones were compared. The reproductive performance of 21 clones and 25 non-clones were also tested. Furthermore, we made a comparison in the growth performance between 466 progeny of the clones and 822 progeny of the non-clones. Our results showed that no significant difference in semen quality and reproductive performance was observed between the clones and the non-clones, although the clones grew slower and exhibited smaller body size than the non-clones. The F1 progeny of the clones showed a greater growth rate than the non-clones. Our results demonstrated through the large animal population showed that SCNT manipulation resulted in a low growth rate and small body size, but the clones could normally produce F1 progeny with excellent growth traits to bring more economic benefits. Therefore, SCNT could be effective in enlarging the merit genetics of the superior boars and increasing the economic benefits in pig reproduction and breeding.

16.
J Reprod Dev ; 66(6): 505-514, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-32908081

RESUMO

Porcine somatic cell nuclear transfer (SCNT) is currently inefficient, as 1-3.95% of reconstructed embryos survive to term; inadequate or erroneous epigenetic reprogramming of the specialized donor somatic nucleus could be a primary reason. Therefore, a locus-specific analysis of DNA methylation dynamics in embryogenesis and the DNA methylation status of gametes and donor cells used for SCNT were conducted in the following developmentally important gene loci: POU5F1, NANOG, SOX2, H19, IGF2, IGF2R, XIST; and the retrotransposon LINE-1. There were significant epigenetic differences between the gametes and the somatic donor cells. Three gamete-specific differentially methylated regions (DMRs) in POU5F1, XIST, and LINE-1 were identified. A delayed demethylation process at POU5F1 and LINE-1 loci occurred after three successive cleavages, compared to the in vitro fertilized (IVF) embryos. Although cloned embryos could undergo de-methylation and re-methylation dynamics at the DMRs of imprinted genes (H19, IGF2R, and XIST), the re-methylation process was compromised, unlike in fertilized embryos. LINE-1 loci are widely dispersed across the whole genome, and LINE-1 DMR might be a potential porcine nuclear reprogramming epi-marker. Data from observations in our present and previous studies, and two published articles were pooled to produce a schematic diagram of locus-specific, DNA methylation dynamics of cloned and IVF embryos during porcine early embryogenesis. This also indicated aberrant DNA methylation reprogramming events, including inadequate DNA demethylation and insufficient re-methylation in cloned embryos. Further research should focus on mechanisms underlying demethylation during the early cleavage of embryos and de novo DNA methylation at the blastocyst stage.


Assuntos
Metilação de DNA , Técnicas de Transferência Nuclear , Oócitos/citologia , Espermatozoides/citologia , Animais , Blastocisto , Reprogramação Celular , Transferência Embrionária , Epigênese Genética , Feminino , Fertilização in vitro , Fibroblastos/metabolismo , Genoma , Técnicas In Vitro , Elementos Nucleotídeos Longos e Dispersos , Masculino , Fator 3 de Transcrição de Octâmero/metabolismo , Oócitos/metabolismo , RNA Longo não Codificante/metabolismo , Retroelementos , Espermatozoides/metabolismo , Suínos
17.
Theriogenology ; 156: 107-115, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32698036

RESUMO

Glutathione peroxidases (GPxs) are regarded as important protectors against oxidative stress. Some members of this protein family were reported to play key roles in protecting sperm against oxidative stress. Whether GPx6 a member of the GPx family also plays a role in protection against oxidative stress is not known to date. The objective of the present study was to evaluate the localization and function of glutathione peroxidase 6 (GPx6) in boar accessory sex glands, seminal plasma, and sperm, as well as the effect of GPx6 on vitality and capacitation in boar sperm. qPCR and Western blot analysis demonstrated the presence of GPx6 in testis, epididymis, bulbourethral glands, prostate, seminal vesicle, sperm and seminal plasma. Incubation of sperm with an GPx6 antibody had no significant effect on the viability of boar sperm prior to capacitation. Surprisingly, when capacitated sperm was incubated with the GPx6 antibody for 240 min, sperm vitality was significantly improved. Western blotting showed that in capacitated sperm without prior pretreatment, GPx6 protein content was reduced compared to sperm before capacitation. To further confirm a role for GPx6 in sperm capacitation, we tested sperm acrosome reaction by ACR.2 and FITC-PSA. The results showed that treatment of sperm with the GPx6 antibody significantly increased sperm capacitation and acrosome reaction. Furthermore, we examined the concentration of cAMP in sperm after capacitation. ELISA demonstrated that the cAMP concentration in the sperm exposed to the GPx6 antibody was significantly higher than that of the control group. In addition, the exposure of sperm to the GPx6 antibody significantly increased the concentration of H2O2, while the expression of SOD3 and CAT were decreased. Based on these observations we would like to postulate that in the boar reproductive tract the GPx6 protein becomes attached to the sperm head preventing the sperm to undergo premature capacitation by affecting components of the antioxidant pathway. How GPx6 expression following ejaculation becomes suppressed to allow sperm capacitation to take place needs further investigation.


Assuntos
Reação Acrossômica , Peróxido de Hidrogênio , Acrossomo , Animais , Masculino , Sêmen , Capacitação Espermática , Espermatozoides , Suínos
18.
Reproduction ; 160(2): 193-203, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413846

RESUMO

Cloned pigs generated by the somatic cell transfer nuclear (SCNT) technique are highly valuable for agriculture, biomedicine, and life sciences. However, the neonatal mortality rate of cloned pigs is very high. The reasons causing the massive loss of cloned pigs during their neonatal ages are unclear. In the present study, we found that the neonatal death of cloned pigs was associated with aberrant purine metabolism, impaired renal morphology and function, and decreased hepatic Hprt1 expression. The downregulation of Hprt1, a key purine metabolism regulation gene, in the liver was responsible for the elevation of an important purine metabolite, uric acid, in the serum, causing abnormalities in kidney morphology and function and leading to death of neonatal cloned pigs. This study provided insights into the pathophysiological mechanisms underlying the neonatal death of clone pigs, and results will help improve their survival rate.


Assuntos
Clonagem de Organismos/efeitos adversos , Hipoxantina Fosforribosiltransferase/metabolismo , Rim/fisiopatologia , Fígado/fisiopatologia , Mortalidade/tendências , Técnicas de Transferência Nuclear/efeitos adversos , Ribose-Fosfato Pirofosfoquinase/metabolismo , Animais , Feminino , Humanos , Hipoxantina Fosforribosiltransferase/genética , Masculino , Ribose-Fosfato Pirofosfoquinase/genética , Suínos
19.
Transgenic Res ; 29(3): 307-319, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32410183

RESUMO

Genetically modified (GM) pigs hold great promises for pig genetic improvement, human health and life science. When GM pigs are produced, selectable marker genes (SMGs) are usually introduced into their genomes for host cell or animal recognition. However, the SMGs that remain in GM pigs might have multiple side effects. To avoid the possible side effects caused by the SMGs, they should be removed from the genome of GM pigs before their commercialization. The Cre recombinase is commonly used to delete the LoxP sites-flanked SMGs from the genome of GM animals. Although SMG-free GM pigs have been generated by Cre-mediated recombination, more efficient and cost-effective approaches are essential for the commercialization of SMG-free GM pigs. In this article we describe the production of a recombinant Cre protein containing a cell-penetrating and a nuclear localization signal peptide in one construct. This engineered Cre enzyme can efficiently excise the LoxP-flanked SMGs in cultured fibroblasts isolated from a transgenic pig, which then can be used as nuclear donor cells to generate live SMG-free GM pigs harboring a desired transgene by somatic cell nuclear transfer. This study describes an efficient and far-less costly method for production of SMG-free GM pigs.


Assuntos
Engenharia Genética , Marcadores Genéticos , Genoma , Integrases/metabolismo , Técnicas de Transferência Nuclear , Recombinação Genética , Transgenes , Animais , Animais Geneticamente Modificados , Fibroblastos/citologia , Fibroblastos/metabolismo , Integrases/genética , Suínos
20.
Cell Reprogram ; 22(2): 71-81, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32125895

RESUMO

Pig cloning technique is valuable in agriculture, biomedicine, and life sciences. However, the full-term developmental efficiency of cloned pig embryos is only about 1%, which limits pig cloning application. The quality of recipient oocytes greatly affects the developmental competence of cloned pig embryos. Thus, this study investigated the effects of a recipient oocyte source (in vivo matured [IVVM] oocytes vs. slaughter house-derived in vitro matured [IVTM] oocytes), and follicular liquid treatment (slaughter house-derived immature follicle-derived fluid [IFF] vs. in vivo-matured follicle-derived fluid [MFF]) during the in vitro maturation (IVM) of oocytes on the development of the cloned pig embryos. Our results showed that using IVVM oocytes to replace IVTM oocytes as recipient oocytes, and using 10% MFF IVM medium to replace 10% IFF IVM medium could enhance the development of the cloned pig embryos. IFF and MFF contained different levels of oocyte quality-related proteins, resulting in different oocyte quality-related gene expression levels and reactive oxygen species levels between the 10% MFF medium-cultured oocytes and 10% IFF medium-cultured oocytes. This study provided useful information for enhancing the pig cloning efficiency by improving the quality of recipient oocytes.


Assuntos
Líquido Folicular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Animais , Blastocisto/efeitos dos fármacos , Blastocisto/fisiologia , Clonagem de Organismos , Técnicas de Cultura Embrionária , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilização in vitro/métodos , Técnicas de Transferência Nuclear , Reação em Cadeia da Polimerase em Tempo Real , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA