Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1141765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600167

RESUMO

In ecological stoichiometry, the stoichiometry and spatial distribution of leaf carbon, nitrogen, and phosphorus are important research topics. Various studies have assessed leaf stoichiometry and its relationships with environmental factors at different scales. However, how the leaf carbon, nitrogen and phosphorus stoichiometric characteristics of the same vegetation type at the community level vary with environmental factors along a continuous altitudinal gradient remains poorly understood. In this paper, 13 sampling sites along an altitudinal gradient of 1,800-3,011 m in a typical temperate mountain meadow ecosystem on the southern slope of the Wutai Mountain in North China were sampled to explore the response of leaf carbon, nitrogen and phosphorus stoichiometric characteristics to altitude change using correlation analysis, and then quantified the contribution of driving factors using canonical correspondence analysis (CCA) and variation partitioning. We found that the community-level leaf stoichiometry of mountain meadows differed significantly at different altitudes, and an increase in altitude significantly decreased community-level leaf total nitrogen (LTN) and leaf total phosphorus (LTP); however, the leaf total carbon (LTC), C∶N, C∶P, and N∶P increased with an increase in altitude. Additionally, with increasing altitude, soil properties showed significant trends. Soil organic carbon (SOC), soil total nitrogen (STN), soil total phosphorus (STP), soil water content and soil electrical conductivity increased significantly, but soil temperature, soil bulk density and soil pH exhibited the opposite trend. Our results suggested that altitude, soil electrical conductivity and soil bulk density significantly influenced the changes in the leaf stoichiometric characteristics, explaining 75.5% of the total variation, and altitude had the greatest influence (36.6%). In the temperate mountains, altitude played a decisive role in affecting patterns of meadow plant nutrients and stoichiometry and was more important than soil in explaining leaf C∶N∶P stoichiometry variations. Our findings provide important references to understand the responses of plant stoichiometry to altitudinal gradients.

2.
ACS Appl Mater Interfaces ; 10(6): 5714-5722, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29368499

RESUMO

The electron-accepting [1,2,4]triazolo[1,5-a]pyridine (TP) moiety was introduced to build bipolar host materials for the first time, and two host materials based on this TP acceptor and carbazole donor, namely, 9,9'-(2-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole) (o-CzTP) and 9,9'-(5-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole) (m-CzTP), were designed and synthesized. These two TP-based host materials possess a high triplet energy (>2.9 eV) and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital levels as well as the bipolar transporting feature, which permits their applicability as universal host materials in multicolor phosphorescent organic light-emitting devices (PhOLEDs). Blue, green, and red PhOLEDs based on o-CzTP and m-CzTP with the same device configuration all show high efficiencies and low efficiency roll-off. The devices hosted by o-CzTP exhibit maximum external quantum efficiencies (ηext) of 27.1, 25.0, and 15.8% for blue, green, and red light emitting, respectively, which are comparable with the best electroluminescene performance reported for FIrpic-based blue, Ir(ppy)3-based green, and Ir(pq)2(acac)-based red PhOLEDs equipped with a single-component host. The white PhOLEDs based on the o-CzTP host and three lumophors containing red, green, and blue emitting layers were fabricated with the same device structure, which exhibit a maximum current efficiency and ηc of 40.4 cd/A and 17.8%, respectively, with the color rendering index value of 75.

3.
Ying Yong Sheng Tai Xue Bao ; 21(9): 2279-87, 2010 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-21265149

RESUMO

By the methods of field sampling and laboratory analysis, this paper studied the variations of soil organic carbon (SOC) and total nitrogen (TN) contents and SOC density under different land use types in Shanghai. Significant differences were observed in the test parameters among different land use types. The SOC density was the highest in paddy field (3.86 kg x m(-2)), followed by in upland (3.17 kg x m(-2)), forestland (3.15 kg x m(-2)), abandoned land (2.73 kg x m(-2)), urban lawn (2.65 kg x m(-2)), garden land (2.13 kg x m(-2)), and tidal flat (1.38 kg x m(-2)). The assessment on the effects of three types of land use change on the test parameters showed that the conversion of paddy field into upland resulted in a significant decrease of SOC and TN contents and SOC density; the abandonment of farmland was not an effective way in improving SOC storage in the Yangtze Delta region with abundant water and heat resources, high soil fertility, and high level of field management; while the 4-5 years conversion of paddy field into artificial forestland decreased the SOC and TN contents and SOC density, suggesting that in a short term, the soil carbon sequestration effect of the conversion from paddy field to forestland was at a low level, due to the limitation of vegetation productivity.


Assuntos
Carbono/análise , Nitrogênio/análise , Solo/análise , Árvores/crescimento & desenvolvimento , China , Cidades , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Compostos Orgânicos/análise , Poaceae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA