Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Antioxidants (Basel) ; 11(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883748

RESUMO

Blood-brain barrier (BBB) breakdown, a characteristic feature of ischemic stroke, contributes to poor patient outcomes. Brain microvascular endothelial cells (BMVECs) are a key component of the BBB and dysfunction or death of these cells following cerebral ischemia reperfusion (I/R) injury can disrupt the BBB, leading to leukocyte infiltration, brain edema and intracerebral hemorrhage. We previously demonstrated that mitochondrial ferritin (FtMt) can alleviate I/R-induced neuronal ferroptosis by inhibiting inflammation-regulated iron deposition. However, whether FtMt is involved in BBB disruption during cerebral I/R is still unknown. In the present study, we found that FtMt expression in BMVECs is upregulated after I/R and overexpression of FtMt attenuates I/R-induced BBB disruption. Mechanistically, we found that FtMt prevents tight junction loss and apoptosis by inhibiting iron dysregulation and reactive oxygen species (ROS) accumulation in I/R-treated BMVECs. Chelating excess iron with deferoxamine alleviates apoptosis in the brain endothelial cell line bEnd.3 under oxygen glucose deprivation followed by reoxygenation (OGD/R) insult. In summary, our data identify a previously unexplored effect for FtMt in the BBB and provide evidence that iron-mediated oxidative stress in BMVECs is an early cause of BMVECs damage and BBB breakdown in ischemic stroke.

3.
Sci Bull (Beijing) ; 65(5): 359-366, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659226

RESUMO

Recently, the rational design of non-precious metal electrocatalysts for highly efficient hydrogen evolution reaction (HER) in alkaline media has received considerable interests in sustainable and renewable energy researches. Herein, vertically aligned and interconnected NiS2/CoS2/MoS2 nanosheet arrays on Ni foam were prepared by a two-step procedure that conducted by the hydrothermal synthesis of Ni-Co molybdate nanosheet array as the precursor and followed by the vapor phase sulfurization to achieve in situ conversion. Basing on the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations, it can be found that the honeycomb-like structure of the Ni-Co molybdate nanosheet array was well preserved after the sulfurization process. The high-resolution TEM (HRTEM) characterization reveals that the NiS2/CoS2/MoS2 nanosheet array provided abundant well-exposed active edge sites and multiple heterointerfaces towards enhanced alkaline HER performance. Electrochemical studies demonstrated that the ultrathin NiS2/CoS2/MoS2 nanosheets exhibited excellent HER performance with an overpotential of 112 mV at 10 mA cm-2 and a smaller Tafel slope of 59 mV dec-1 in comparison with NiS2/MoS2 (155 mV and 89 mV dec-1) and CoS2/MoS2 (124 mV and 75 mV dec-1) samples by taking the advantage of the well-exposed multiple heterointerfaces. This work presents a facile and reliable synthetic strategy for the rational design of highly efficient electrocatalysts for the HER in alkaline solution based on non-precious metal sulfide nanocomposite.

4.
RSC Adv ; 10(15): 8973-8981, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35496514

RESUMO

CoS2/MoS2 heteronanosheet arrays (HNSAs) with vertically aligned flower-like architectures are fabricated through in situ topotactic sulfurization of CoMoO4 nanosheet array (NSA) precursors on conductive Ni foam. CoMoO4 NSAs are prepared by a self-template hydrothermal method without using any hard template and surfactant. Benefiting from a 3D flower-like architecture constituted by ultrathin nanosheets with abundant exposed heterointerfaces as highly active sites and predesigned void spaces, the as-synthesized CoS2/MoS2 HNSAs exhibit an excellent hydrogen evolution reaction (HER) performance with a low overpotential of 50 mV at 10 mA cm-2, and a small Tafel slope of 76 mV dec-1 in 1.0 M KOH, which outperforms most previously reported CoS2 and MoS2 based electrocatalysts with compositional or morphological similarity. This work demonstrates the great potential in developing high-efficiency and earth-abundant electrocatalysts for alkaline HER through heterointerface engineering and morphological design by utilizing transition metal molybdate as a promising platform.

5.
Glob Chall ; 3(5): 1800084, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31565376

RESUMO

To enhance the microbial fuel cell (MFC) for wastewater treatment and chemical oxygen demand degradation, TiO2 nanotubes arrays (TNA) are successfully synthesized on Ti foil substrate by the anodization process in HF and NH4F solution, respectively (hereafter, denoted as TNA-HF and TNA-NF). The differences between the two kinds of TNA are revealed based on their morphologies and spectroscopic characterizations. It should be highlighted that 3D TNA-NF with an appropriate dimension can make a positive contribution to the high photocatalytic activity. In comparison with the TNA-HF, the 3D TNA-NF sample exhibits a significant enhancement in current generation as the MFC anode. In particular, the TNA-NF performs nearly 1.23 times higher than the TNA-HF, and near twofold higher than the carbon felt. It is found that the two kinds of TiO2-based anodes have different conductivities and corrosion potentials, which are responsible for the difference in their current generation performances. Based on the experimental results, excellent stability, reliability, and low cost, TNA-NF can be considered a promising and scalable MFC bioanode material.

6.
Brain Res Bull ; 153: 191-201, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472185

RESUMO

The present study aimed to test the hypothesis that propofol (PRO) could exert a neuroprotective effect via inhibiting oxidative stress induced by iron accumulation. Human SH-SY5Y cells were pretreated with ferric citrate (FAC), and then were protected by PRO. Cell viability was measured by MTT method. Iron levels were assayed by ICP-MS. Cell apoptosis was examined by TUNEL and digital holographic technique. Malondialdehyde (MDA), reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) depolarization were measured by MDA, DCFH-DA and JC-1 kits, respectively. The expression of proteins or genes involved in iron metabolism such as ferritin, TfR1, DMT1, Fpn1 and hepcidin, and other apoptosis-related proteins including Bcl2, Bax, Bid, Cox2, IL-6, JAK1 and STAT3 were detected by western blot. Our results showed low concentration of PRO (5 µM) could significantly prevent FAC induced apoptosis via inhibiting oxidative stress and iron accumulation. PRO suppressed the increase of ROS and MDA and decrease of MMP induced by FAC. PRO significantly down-regulated the expression of ferritin and up-regulated the expression of TfR1and Fpn1, but had no effect of DMT1. Furthermore, this effect was not done by PRO chelating iron. Meanwhile, PRO suppressed the inflammatory response through inhibiting IL-6 and Cox2 expression and activating JAK/STAT3 signaling induced by iron overload. In conclusion, here we demonstrated a new antioxidation mechanism of PRO. PRO could protect against nerve cell injury induced by overload of iron through regulating iron metabolism and inhibiting stress oxidative and inflammation reaction pathways by targeting JAK/STAT3 signaling.


Assuntos
Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Propofol/farmacologia , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos , Hipocampo/efeitos dos fármacos , Humanos , Ferro/metabolismo , Janus Quinases , Fármacos Neuroprotetores/farmacologia , Oxirredução , Fosforilação , Propofol/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3 , Transdução de Sinais
7.
ACS Appl Mater Interfaces ; 10(11): 9444-9450, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29473728

RESUMO

Highly ordered hierarchical Pt and PtNi nanowire arrays were prepared using CdS hierarchical nanowire arrays (HNWAs) as sacrificial templates and demonstrated high electrochemical active surface areas. For the resulting Pt HNWAs sample, the peak current for methanol oxidation at +0.74 V was almost 1 order of magnitude higher than that of Pt solid nanowire arrays prepared in a similar manner but without the use of CdS template, and the addition of a Ni cocatalyst effectively enhanced the tolerance against CO poisoning. The results demonstrated that highly ordered Pt and PtNi HNWAs may be exploited as promising anode catalysts in the application of direct methanol fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA