RESUMO
Iprodione is a dicarboximide fungicide that is widely used in agriculture around the world. A reliable and rapid detection method is needed for the on-site monitoring of iprodione residues in a variety of agricultural products. Herein, a colloidal gold immunochromatographic test strip was developed based on a selected coating antigen and a specific monoclonal antibody against iprodione. The particle size of colloidal gold, the preparation technique of the conjugate pad, the composition of the loading buffer, and the extraction solvent were comprehensively optimized for the test strip. A cut-off value of 0.9 mg kg-1 (50 ng mL-1) and a visual limit of detection of 0.09 mg kg-1 (5 ng mL-1) were achieved in a complex matrix of tobacco. No cross-reactivity was observed for iprodione metabolite and four other widely used pesticides during tobacco growth. Furthermore, the developed colloidal gold immunochromatographic test strip was applied to determine iprodione residues in tobacco samples, and the obtained results were in good agreement with those obtained by liquid chromatography tandem mass spectrometry. Additionally, the test strip was found to be stable afterlong-term storage at 37 °C for two months. The developed colloidal gold immunochromatographic test strip showed excellent accuracy, sensitivity, specificity, and stability, therefore, it is suitable for the rapid detection of iprodione residues in complex matrices.
Assuntos
Coloide de Ouro , Hidantoínas , Coloide de Ouro/química , Cromatografia de Afinidade/métodos , Anticorpos Monoclonais/químicaRESUMO
The development of a sensitive and rapid screening method for Ralstonia solanacearum is critical for the control of tobacco wilt. In the present study, tissue homogenates of three tobacco varieties (Honda, Yunnan 87 and K326) with different resistance to R. solanacearum, were individually used as additives to the bacteria culture medium. The changes in R. solanacearum secretome were investigated and one of the most abundant secretary proteins with increased expression, polygalacturonase (PG), was selected as a marker for R. solanacearum identification. Then PG gene was cloned into E. coli, and the expressed protein was used as the immunogen to develop monoclonal antibodies. Subsequently, the monoclonal antibody against PG was coupled with synthesized polystyrene microspheres, and a rapid test strip system was developed for the detection of R. solanacearum based on time-resolved fluorescent immunochromatographic (TRFIC) method. Under optimal conditions, the detection limit of the strips could reach 72 cells/mL; while it was 422 cells/mL with a linear range from 4 × 102 to 5.12 × 104 cells/mL when testing tobacco samples, which is 1000 times lower than that of colloidal gold-labeled strips. Notably, no cross-reactivity was observed with nine tobacco-related pathogens. Finally, this TRFIC strips was applied to detect R. solanacearum existed in the tobacco and soils of fields with or without bacterial wilt. The results demonstrated that this TRFIC strips could distinguish the difference in bacterial concentration existed in tobacco and soil between the two fields. In summary, this test strip is suitable for sensitive, quick screening of R. solanacearum in tobacco.
Assuntos
Doenças das Plantas , Ralstonia solanacearum , China , Escherichia coli/genética , Ralstonia solanacearum/genética , SecretomaRESUMO
AIMS: Alternaria longipes is a causal agent of brown spot of tobacco, which remains a serious threat to tobacco production. Herein, we established a detection method for A. longipes in tobacco samples based on the principle of time-resolved fluoroimmunoassay, in order to fulfil the requirement of rapid, sensitive and accurate detection in situ. METHODS AND RESULTS: A monoclonal antibody against A. longipes was generated, and its purity and titration were assessed using western blot and ELISA. The size of europium (III) nanospheres was measured to confirm successful antibody conjugation. The method described here can detect A. longipes protein lysates as low as 0.78 ng ml-1 , with recovery rates ranging from 85.96% to 99.67% in spiked tobacco. The specificity was also confirmed using a panel of microorganisms. CONCLUSIONS: The fluorescent strips allow rapid and sensitive onsite detection of A. longipes in tobacco samples, with high accuracy, specificity, and repeatability. SIGNIFICANCE AND IMPACT OF THE STUDY: This novel detection method provides convenience of using crude samples without complex procedures, and therefore allows rapid onsite detection by end users and quick responses towards A. longipes, which is critical for disease control and elimination of phytopathogens.