Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 157: 104824, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32344049

RESUMO

In recent years, the interaction between the bioactive ingredients of traditional Chinese medicine (TCM) and gut microbiota has been a focus of many studies. When TCM enters the digestive tract, some bioactive ingredients are not absorbed into the gut well thus leading to low bioavailability. Ingredients of TCM are metabolised, or biotransformed by gut microbiota, thereby producing new bioactive molecules, and promote medicine absorption into the circulation. At the same time, the ingredients of TCM effect the composition and structure of gut microbiota, thereby influencing the remote function of diseased organs / tissues through the systemic action of the gut microbiota. In this review, we summarise the gut microbiota-mediated metabolism of flavonoids, alkaloids, terpenoids, saponins, polysaccharides, phenylpropanoids, and organic acids, along with a discussion on the metabolites formed and the biotransformation pathways involving various enzymes. We also highlight the importance of bioactive ingredients of TCM in regulating gut microbiota.


Assuntos
Bactérias/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Microbioma Gastrointestinal , Intestinos/microbiologia , Medicina Tradicional Chinesa , Animais , Bactérias/efeitos dos fármacos , Disponibilidade Biológica , Biotransformação , Medicamentos de Ervas Chinesas/farmacocinética , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Absorção Intestinal
2.
ACS Appl Mater Interfaces ; 4(8): 3852-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22732138

RESUMO

ZnO nanorod arrays and nanodisk networks were grown directly on Si substrate by thermal evaporation of ZnCl(2) powder and a mixture of ZnCl(2) and InCl(3)·4H(2)O at 450 °C in air, respectively. The ZnO nanorods with the diameters of 0.64 to 0.91 µm and length of about 5.1 µm are single crystalline with the hexagonal structure and grow along the [001] direction. The nanodisk has perfect hexagonal shape, grow mainly along the [0110] directions, and are enclosed by ±(0001) top and bottom surfaces. ZnO nanoparticle films oriented in the [001] direction formed first served as seeds, and grow into nanorod arrays via the vapor-solid (VS) process. However, when InCl(3)·4H(2)O was introduced into the reaction system ZnO thick nanosheet films are first formed because of the local segregation of the doping element of indium. The ZnO thick nanosheet films served as seeds, and grow into nanodisk networks via the V-S process. Photoluminescence and field emission properties of the as-obtained ZnO nanorod arrays and hexagonal nanodisk networks have been studied. It was found that the hexagonal nanodisk networks exhibit strong blue-green emissions originated from defect states and enhanced field emission property.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA