Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Vet Sci ; 24(3): e44, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37271512

RESUMO

BACKGROUND: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. OBJECTIVE: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. METHODS: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. RESULTS: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1ß and tumor necrosis factor-α). CONCLUSIONS: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.


Assuntos
Infecções por Pseudomonas , Camundongos , Animais , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/veterinária , Preparações de Ação Retardada , Hidrogéis/farmacologia , Hidrogéis/química , Alginatos/farmacologia , Alginatos/química , Modelos Animais de Doenças , Estudos Transversais , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Bactérias
2.
Front Immunol ; 12: 693972, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386005

RESUMO

The protection of current influenza vaccines is limited due to the viral antigenic shifts and antigenic drifts. The universal influenza vaccine is a new hotspot in vaccine research that aims to overcome these problems. Polydopamine (PDA), a versatile biomaterial, has the advantages of an excellent biocompatibility, controllable particle size, and distinctive drug loading approach in drug delivery systems. To enhance the immunogenicities and delivery efficiencies of H9N2 avian influenza virus (AIV) epitope peptide vaccines, PDA nanoparticles conjugated with the BPP-V and BP-IV epitope peptides were used to prepare the nano BPP-V and BP-IV epitope peptide vaccines, respectively. The characteristics of the newly developed epitope peptide vaccines were then evaluated, revealing particle sizes ranging from approximately 240 to 290 nm (PDI<0.3), indicating that the synthesized nanoparticles were stable. Simultaneously, the immunoprotective effects of nano BPP-V and BP-IV epitope peptide vaccines were assessed. The nano BPP-V and BP-IV epitope vaccines, especially nano BP-IV epitope vaccine, quickly induced anti-hemagglutinin (HA) antibody production and a sustained immune response, significantly promoted humoral and cellular immune responses, reduced viral lung damage and provided effective protection against AIV viral infection. Together, these results reveal that PDA, as a delivery carrier, can improve the immunogenicities and delivery efficiencies of H9N2 AIV nano epitope vaccines, thereby providing a theoretical basis for the design and development of PDA as a carrier of new universal influenza vaccines.


Assuntos
Portadores de Fármacos , Epitopos , Imunogenicidade da Vacina , Indóis/química , Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/administração & dosagem , Pulmão/efeitos dos fármacos , Nanopartículas , Oligopeptídeos/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Polímeros/química , Animais , Anticorpos Antivirais/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Composição de Medicamentos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Oligopeptídeos/química , Oligopeptídeos/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Vacinação , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
3.
Microb Pathog ; 158: 105095, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34280501

RESUMO

Short peptide antigens covering conserved T or B cell epitopes have been investigated in influenza vaccines. Bursal pentapeptide V (BPP-V) and bursal peptide IV (BP-IV) are small molecular peptides that were isolated and identified from the bursa of Fabricius (BF) and induce a strong immune response at both the humoural and cellular levels. To explore the molecular adjuvant potential of BPP-V and BP-IV with an epitope vaccine, an epitope peptide (HA284-298, GNCVVQCQTERGGLN) rich in T and B cell epitopes for the H9N2 avian influenza virus (AIV) haemagglutinin (HA) protein was selected. BPP-V and BP-IV were coupled with the epitope peptide sequence to form BPP-V and BP-IV-epitope vaccines, respectively. The immunoefficacy of BPP-V and BP-IV-epitope peptide vaccines was evaluated. The results showed that the epitope peptide had weak immunogenicity. The BPP-V-epitope peptide vaccine promoted only the secretion of anti-HA IgG and IgG1 antibodies. The BP-IV-epitope peptide vaccine not only promoted the production of anti-HA IgG and IgG1 antibodies but also significantly induced the production of the IgG2a antibody. The BP-IV-epitope peptide vaccine significantly promoted the production of interleukin (IL-4) and interferon-γ (IFN-γ) (the BPP-V epitope peptide vaccine promoted only the production of IL-4), enhanced the cytotoxic T lymphocyte (CTL) response, and increased the proportion of CD3+ T lymphocytes. Moreover, the BP-IV-epitope peptide vaccine promoted a cell-mediated immune response similar to that of the AIV vaccine group. Furthermore, BPP-V and BP-IV-epitope peptide vaccines could also accelerate the clearance of pulmonary virus and reduce pathological damage after the challenge with H9N2 AIV. This study demonstrates the potential of BP-IV as an effective adjuvant for the epitope peptide vaccine for the H9N2 AIV.


Assuntos
Adjuvantes Imunológicos , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Animais , Anticorpos Antivirais , Galinhas , Epitopos de Linfócito B , Epitopos de Linfócito T , Influenza Aviária/prevenção & controle , Peptídeos/imunologia , Vacinas de Subunidades Antigênicas
4.
Front Vet Sci ; 8: 664139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055951

RESUMO

Traditional antibiotics have made great contributions to human health and animal husbandry since the discovery of penicillin in 1928, but bacterial resistance and drug residues are growing threats to global public health due to the long-term uncontrolled application of antibiotics. There is a critical need to develop new antimicrobial drugs to replace antibiotics. Antimicrobial peptides (AMPs) are distributed in all kingdoms of life, presenting activity against pathogens as well as anticancer, anti-inflammatory, and immunomodulatory activities; consequently, they have prospects as new potential alternatives to antibiotics. Porcine myeloid antimicrobial peptides (PMAPs), the porcine cathelicidin family of AMPs, have been reported in the literature in recent years. PMAPs have become an important research topic due to their strong antibacterial activity. This review focuses on the universal trends in the biochemical parameters, structural characteristics and biological activities of PMAPs.

5.
Eur J Pharm Sci ; 157: 105609, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141035

RESUMO

Antimicrobial peptides are a new type of antibacterial drugs with a broad antibacterial spectrum. Based on our previous research, PMAP-23RI-Dec was designed by modifying the C-terminal of PMAP-23RI with decanoic acid. In this study, we measured the antibacterial activity, stability, hemolysis, and cytotoxicity of PMAP-23RI-Dec. The mechanism of PMAP-23RI-Dec on biofilm and cell membranes were also studied. The results show that PMAP-23RI-Dec exhibited high antibacterial activity and stability, but the hemolytic activity and cytotoxicity of PMAP-23RI-Dec were not enhanced. Moreover, PMAP-23RI-Dec could inhibit biofilm formation at low concentrations, and enhance the killing effect on bacteria by changing the permeability of their cell membranes. Finally, PMAP-23RI-Dec reduced Pseudomonas aeruginosa GIM1.551 and Staphylococcus aureus ATCC25923 damage to organs, and showed superior efficacy against peritonitis. PMAP-23RI-Dec also reduced the scope of abscess and alleviated wound infections. Our research indicated that PMAP-23RI-Dec is a new antibacterial agent with potential clinical application.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Ácidos Decanoicos , Testes de Sensibilidade Microbiana , Staphylococcus aureus
6.
BMC Vet Res ; 16(1): 419, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138816

RESUMO

BACKGROUND: The problem of increasing resistance against conventional antibiotics has drawn people's attention. Therefore, the development of novel antibacterial agents with effective and safe therapeutic effects is imminent. Antimicrobial peptides (AMPs) are considered a promising class of antibacterial agents due to their broad antibacterial spectrum. RESULTS: In this study, on the basis of our previously studied peptide PMAP-37(F34-R), a novel antimicrobial peptide Chol-37(F34-R) was developed by N-terminal cholesterol modification to increase hydrophobicity. We observed that the N-terminal cholesterol-modified Chol-37(F34-R) showed higher antimicrobial activity than PMAP-37(F34-R) in vitro. Chol-37(F34-R) also exhibited effective anti-biofilm activity and may kill bacteria by improving the permeability of their membranes. Chol-37(F34-R) exerted high stability in different pH, salt, serum, and boiling water environments. Chol-37(F34-R) also showed no hemolytic activity and substantially low toxicity. Furthermore, Chol-37(F34-R) exhibited good potency of bacteria eradication and promoted wound healing and abscess reduction in infected mice. Meanwhile, in S. aureus ATCC25923-infected peritonitis model, Chol-37(F34-R) exhibited an impressive therapeutic effect by reducing the decrease in systemic bacterial burden and alleviating organ damage. CONCLUSIONS: Our findings suggested that the N-terminal cholesterol modification of PMAP-37(F34-R) could improve antibacterial activity. Chol-37(F34-R) displayed excellent bactericidal efficacy and impressive therapeutic effect in vivo. Thus, Chol-37(F34-R) may be a candidate for antimicrobial agents against microbial infection in the clinic.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Colesterol/química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
7.
Artigo em Inglês | MEDLINE | ID: mdl-32984074

RESUMO

Drug-resistant bacteria infections and drug residues have been increasing and causing antibiotic resistance and public health threats worldwide. Antimicrobial peptides (AMPs) are novel antimicrobial drugs with the potential to solve these problems. Here, a peptide based on our previously studied peptide PMAP-36PW was designed via N-terminal myristoylation and referred to as Myr-36PW. The fatty acid modification provided the as-prepared peptide with good stability and higher antimicrobial activity compared with PMAP-36PW in vitro. Moreover, Myr-36PW exhibited effective anti-biofilm activity against Gram-negative bacteria and may kill bacteria by improving the permeability of their membranes. In addition, the designed peptide Myr-36PW could inhibit the bacterial growth of Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa GIM 1.551 to target organs, decrease the inflammatory damage, show an impressive therapeutic effect on mouse pneumonia and peritonitis experiments, and promote abscess reduction and wound healing in infected mice. These results reveal that Myr-36PW is a promising antimicrobial agent against bacterial infections.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA