Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38779757

RESUMO

The pore-forming α subunit of the large conductance potassium (BK) channel is encoded by a single gene, KCNMA1. BK channel-mediated K+ secretion in the kidney is crucial for overall renal K+ homeostasis in both physiological and pathological conditions. BK channels achieve phenotypic diversity by various mechanisms, including substantial exon re-arrangements at seven major alternative splicing sites. However, KCNMA1 alternative splicing in the kidney has not been characterized. The current study aims to identify the major splice variants of mouse Kcnma1 in whole kidney and distal nephron segments. We designed primers that specifically cross exons within each alternative splice site of mouse Kcnma1 and performed real time RT-qPCR to quantify relative abundance of each splice variant. Our data suggest Kcnma1 splice variants within mouse kidney are less diverse than in the brain.During postnatal kidney development, most Kcnma1 splice variants at site 5 and the C-terminus increase in abundance over time. Within the kidney, the regulation of Kcnma1 alternative exon splicing within these two sites by dietary K+ loading is both site- and sex-specific. In microdissected distal tubules, the Kcnma1 alternative splicing profile, as well as its regulation by dietary K+, are distinctly different than in the whole kidney, suggesting segment and/or cell type specificity in Kcnma1 splicing events. Overall, our data provides evidence that Kcnma1 alternative splicing is regulated during postnatal development and may serve as an important adaptive mechanism to dietary K+ loading in mouse kidney.

2.
J Physiol ; 602(4): 737-757, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345534

RESUMO

Paraoxonase 3 (PON3) is expressed in the aldosterone-sensitive distal nephron, where filtered Na+ is reabsorbed mainly via the epithelial Na+ channel (ENaC) and Na+ -coupled co-transporters. We previously showed that PON3 negatively regulates ENaC through a chaperone mechanism. The present study aimed to determine the physiological role of PON3 in renal Na+ and K+ homeostasis. Pon3 knockout (KO) mice had higher amiloride-induced natriuresis and lower plasma [K+ ] at baseline. Single channel recordings in split-open tubules showed that the number of active channels per patch was significantly higher in KO mice, resulting in a higher channel activity in the absence of PON3. Although whole kidney abundance of ENaC subunits was not altered in Pon3 KOs, ENaC gamma subunit was more apically distributed within the connecting tubules and cortical collecting ducts of Pon3 KO kidneys. Additionally, small interfering RNA-mediated knockdown of PON3 in cultured mouse cortical collecting duct cells led to an increased surface abundance of ENaC gamma subunit. As a result of lower plasma [K+ ], sodium chloride co-transporter phosphorylation was enhanced in the KO kidneys, a phenotype that was corrected by a high K+ diet. Finally, PON3 expression was upregulated in mouse kidneys under dietary K+ restriction, potentially providing a mechanism to dampen ENaC activity and associated K+ secretion. Taken together, our results show that PON3 has a role in renal Na+ and K+ homeostasis through regulating ENaC functional expression in the distal nephron. KEY POINTS: Paraoxonase 3 (PON3) is expressed in the distal nephron of mouse kidneys and functions as a molecular chaperone to reduce epithelial Na+ channel (ENaC) expression and activity in heterologous expression systems. We examined the physiological role of PON3 in renal Na+ and K+ handling using a Pon3 knockout (KO) mouse model. At baseline, Pon3 KO mice had lower blood [K+ ], more functional ENaC in connecting tubules/cortical collecting ducts, higher amiloride-induced natriuresis, and enhanced sodium chloride co-transporter (NCC) phosphorylation. Upon challenge with a high K+ diet, Pon3 KO mice had normalized blood [K+ ] and -NCC phosphorylation but lower circulating aldosterone levels compared to their littermate controls. Kidney PON3 abundance was altered in mice under dietary K+ loading or K+ restriction, providing a potential mechanism for regulating ENaC functional expression and renal Na+ and K+ homeostasis in the distal nephron.


Assuntos
Amilorida , Simportadores , Camundongos , Animais , Amilorida/farmacologia , Arildialquilfosfatase/metabolismo , Canais Epiteliais de Sódio/metabolismo , Aldosterona/metabolismo , Cloreto de Sódio/metabolismo , Sódio/metabolismo , Néfrons/metabolismo
3.
Biochem J ; 480(18): 1459-1473, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37702403

RESUMO

Transmembrane proteins have unique requirements to fold and integrate into the endoplasmic reticulum (ER) membrane. Most notably, transmembrane proteins must fold in three separate environments: extracellular domains fold in the oxidizing environment of the ER lumen, transmembrane domains (TMDs) fold within the lipid bilayer, and cytosolic domains fold in the reducing environment of the cytosol. Moreover, each region is acted upon by a unique set of chaperones and monitored by components of the ER associated quality control machinery that identify misfolded domains in each compartment. One factor is the ER lumenal Hsp70-like chaperone, Lhs1. Our previous work established that Lhs1 is required for the degradation of the unassembled α-subunit of the epithelial sodium channel (αENaC), but not the homologous ß- and γENaC subunits. However, assembly of the ENaC heterotrimer blocked the Lhs1-dependent ER associated degradation (ERAD) of the α-subunit, yet the characteristics that dictate the specificity of Lhs1-dependent ERAD substrates remained unclear. We now report that Lhs1-dependent substrates share a unique set of features. First, all Lhs1 substrates appear to be unglycosylated, and second they contain two TMDs. Each substrate also contains orphaned or unassembled TMDs. Additionally, interfering with inter-subunit assembly of the ENaC trimer results in Lhs1-dependent degradation of the entire complex. Finally, our work suggests that Lhs1 is required for a subset of ERAD substrates that also require the Hrd1 ubiquitin ligase. Together, these data provide hints as to the identities of as-yet unconfirmed substrates of Lhs1 and potentially of the Lhs1 homolog in mammals, GRP170.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Animais , Citosol , Bicamadas Lipídicas , Proteínas de Membrana/genética , Mamíferos
4.
Physiol Rep ; 11(1): e15554, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636010

RESUMO

The epithelial Na+ channel (ENaC) is traditionally composed of three subunits, although non-canonical expression has been found in various tissues including the vasculature, brain, lung, and dendritic cells of the immune system. Studies of ENaC structure and function have largely relied on heterologous expression systems, often with epitope-tagged channel subunits. Relevant in vivo physiological studies have used ENaC inhibitors, mice with global or tissue specific knockout of subunits, and anti-ENaC subunit antibodies generated by investigators or by commercial sources. Availability of well-characterized, specific antibodies is imperative as we move forward in understanding the role of ENaC in non-epithelial tissues where expression, subunit organization, and electrophysiological characteristics may differ from epithelial tissues. We report that a commonly used commercial anti-α subunit antibody recognizes an intense non-specific band on mouse whole kidney and lung immunoblots, which migrates adjacent to a less intense, aldosterone-induced full length α-subunit. This antibody localizes to the basolateral membrane of aquaporin 2 negative cells in kidney medulla. We validated antibodies against the ß- and γ-subunits from the same commercial source. Our work illustrates the importance of validation studies when using popular, commercially available anti-ENaC antibodies.


Assuntos
Canais Epiteliais de Sódio , Rim , Camundongos , Animais , Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Sódio/metabolismo , Epitélio/metabolismo , Medula Renal/metabolismo
5.
Mar Pollut Bull ; 185(Pt A): 114265, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36283153

RESUMO

Functional diversity of macrofaunal assemblages can reflect the composition and differences of functional traits, indicating their response to various contaminants, especially heavy metal pollution. We explored the effects of environment variables over gradients of heavy metal pollution on macrofaunal assemblages, using biological traits analysis, generalized linear model (GLM), AZTI marine biotic index (AMBI), and various biodiversity indexes. The RLQ (co-inertia analysis) and fourth-corner approaches were used to investigate the specific response of functional traits to heavy metal pollution. Most sites were environmentally degraded by heavy metal pollution and macrofaunal body size had a miniaturization trend. There was a significant correlation between functional diversity indexes and AMBI. The RLQ and fourth-corner analysis and GLM models showed that heavy metal and natural environmental gradients had a profound effect on functional diversity. The functional divergence and dispersion indexes, along with the abundance of some specific species, were appropriate indexes for heavy metal pollution.


Assuntos
Monitoramento Ambiental , Metais Pesados , Metais Pesados/análise , Poluição Ambiental , Biodiversidade , China , Ecossistema
6.
Am J Physiol Renal Physiol ; 323(4): F479-F491, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979965

RESUMO

Kidney organoids derived from human or rodent pluripotent stem cells have glomerular structures and differentiated/polarized nephron segments. Although there is an increasing understanding of the patterns of expression of transcripts and proteins within kidney organoids, there is a paucity of data regarding functional protein expression, in particular on transporters that mediate the vectorial transport of solutes. Using cells derived from kidney organoids, we examined the functional expression of key ion channels that are expressed in distal nephron segments: the large-conductance Ca2+-activated K+ (BKCa) channel, the renal outer medullary K+ (ROMK, Kir1.1) channel, and the epithelial Na+ channel (ENaC). RNA-sequencing analyses showed that genes encoding the pore-forming subunits of these transporters, and for BKCa channels, key accessory subunits, are expressed in kidney organoids. Expression and localization of selected ion channels was confirmed by immunofluorescence microscopy and immunoblot analysis. Electrophysiological analysis showed that BKCa and ROMK channels are expressed in different cell populations. These two cell populations also expressed other unidentified Ba2+-sensitive K+ channels. BKCa expression was confirmed at a single channel level, based on its high conductance and voltage dependence of activation. We also found a population of cells expressing amiloride-sensitive ENaC currents. In summary, our results show that human kidney organoids functionally produce key distal nephron K+ and Na+ channels.NEW & NOTEWORTHY Our results show that human kidney organoids express key K+ and Na+ channels that are expressed on the apical membranes of cells in the aldosterone-sensitive distal nephron, including the large-conductance Ca2+-activated K+ channel, renal outer medullary K+ channel, and epithelial Na+ channel.


Assuntos
Células-Tronco Pluripotentes Induzidas , Canais de Potássio Corretores do Fluxo de Internalização , Aldosterona/metabolismo , Amilorida/farmacologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/metabolismo , Organoides/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA/metabolismo , Sódio/metabolismo
7.
Am J Physiol Cell Physiol ; 322(1): C111-C121, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852210

RESUMO

The mammalian paraoxonases (PONs) have been linked to protection against oxidative stress. However, the physiological roles of members in this family (PON1, PON2, and PON3) are still being characterized. PON2 and PON3 are expressed in the aldosterone-sensitive distal nephron of the kidney and have been shown to negatively regulate expression of the epithelial sodium channel (ENaC), a trimeric ion channel that orchestrates salt and water homeostasis. To date, the nature of this phenomenon has not been explored. Therefore, to investigate the mechanism by which PON2 regulates ENaC, we expressed PON2 along with the ENaC subunits in fisher rat thyroid (FRT) cells, a system that is amenable to biochemical analyses of ENaC assembly and trafficking. We found that PON2 primarily resides in the endoplasmic reticulum (ER) in FRT cells, and its expression reduces the abundance of each ENaC subunit, reflecting enhanced subunit turnover. In contrast, no effect on the levels of mRNAs encoding the ENaC subunits was evident. Inhibition of lysosome function with chloroquine or NH4Cl did not alter the inhibitory effect of PON2 on ENaC expression. In contrast, PON2 accelerates ENaC degradation in a proteasome-dependent manner and acts before ENaC subunit ubiquitination. As a result of enhanced ENaC subunit ubiquitination and degradation, both channel surface expression and ENaC-mediated Na+ transport in FRT cells were reduced by PON2. Together, our data suggest that PON2 functions as an ER chaperone to monitor ENaC biogenesis and redirects the channel for ER-associated degradation.


Assuntos
Arildialquilfosfatase/metabolismo , Retículo Endoplasmático/metabolismo , Canais Epiteliais de Sódio/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Arildialquilfosfatase/análise , Retículo Endoplasmático/química , Canais Epiteliais de Sódio/análise , Camundongos , Chaperonas Moleculares/análise
8.
Am J Physiol Renal Physiol ; 320(3): F485-F491, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522411

RESUMO

Extracellular proteases can activate the epithelial Na channel (ENaC) by cleavage of the γ subunit. Here, we investigated the cleavage state of the channel in the kidneys of mice and rats on a low-salt diet. We identified the cleaved species of channels expressed in Fisher rat thyroid cells by coexpressing the apical membrane-bound protease channel-activating protease 1 (CAP1; prostasin). To compare the peptides produced in the heterologous system with those in the mouse kidney, we treated both lysates with PNGaseF to remove N-linked glycosylation. The apparent molecular mass of the smallest COOH-terminal fragment of γENaC (52 kDa) was indistinguishable from that of the CAP1-induced species in Fisher rat thyroid cells. Similar cleaved peptides were observed in total and cell surface fractions of the rat kidney. This outcome suggests that most of the subunits at the surface have been processed by extracellular proteases. This was confirmed using nonreducing gels, in which the NH2- and COOH-terminal fragments of γENaC are linked by a disulfide bond. Under these conditions, the major cleaved form in the rat kidney had an apparent molecular mass of 56 kDa, ∼4 kDa lower than that of the full-length form, consistent with excision of a short peptide by two proteolytic events. We conclude that the most abundant γENaC species in the apical membrane of rat and mouse kidneys on a low-Na diet is the twice-cleaved, presumably activated form.NEW & NOTEWORTHY We have identified the major aldosterone-dependent cleaved form of the epithelial Na channel (ENaC) γ subunit in the kidney as a twice-cleaved peptide. This form appears to be identical in size with a subunit cleaved in vitro by the extracellular protease channel-activating protease 1 (prostasin). In the absence of reducing agents, it has an overall molecular mass less than that of the intact subunit, consistent with the excision of an inhibitory domain.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Serina Endopeptidases/metabolismo , Sódio/metabolismo , Aldosterona/metabolismo , Animais , Dieta Hipossódica/métodos , Camundongos , Subunidades Proteicas/metabolismo , Proteólise , Ratos
9.
J Biol Chem ; 295(15): 4950-4962, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32079677

RESUMO

The paraoxonase (PON) family comprises three highly conserved members: PON1, PON2, and PON3. They are orthologs of Caenorhabditis elegans MEC-6, an endoplasmic reticulum-resident chaperone that has a critical role in proper assembly and surface expression of the touch-sensing degenerin channel in nematodes. We have shown recently that MEC-6 and PON2 negatively regulate functional expression of the epithelial Na+ channel (ENaC), suggesting that the chaperone function is conserved within this family. We hypothesized that other PON family members also modulate ion channel expression. Pon3 is specifically expressed in the aldosterone-sensitive distal tubules in the mouse kidney. We found here that knocking down endogenous Pon3 in mouse cortical collecting duct cells enhanced Na+ transport, which was associated with increased γENaC abundance. We further examined Pon3 regulation of ENaC in two heterologous expression systems, Fisher rat thyroid cells and Xenopus oocytes. Pon3 coimmunoprecipitated with each of the three ENaC subunits in Fisher rat thyroid cells. As a result of this interaction, the whole-cell and surface abundance of ENaC α and γ subunits was reduced by Pon3. When expressed in oocytes, Pon3 inhibited ENaC-mediated amiloride-sensitive Na+ currents, in part by reducing the surface expression of ENaC. In contrast, Pon3 did not alter the response of ENaC to chymotrypsin-mediated proteolytic activation or [2-(trimethylammonium)ethyl]methanethiosulfonate-induced activation of αßS518Cγ, suggesting that Pon3 does not affect channel open probability. Together, our results suggest that PON3 regulates ENaC expression by inhibiting its biogenesis and/or trafficking.


Assuntos
Arildialquilfosfatase/metabolismo , Membrana Celular/metabolismo , Canais Epiteliais de Sódio/metabolismo , Oócitos/metabolismo , Sódio/metabolismo , Glândula Tireoide/metabolismo , Animais , Arildialquilfosfatase/genética , Canais Epiteliais de Sódio/genética , Transporte de Íons , Camundongos , Chaperonas Moleculares , Oócitos/citologia , Ratos , Transdução de Sinais , Glândula Tireoide/citologia , Xenopus laevis
10.
J Biol Chem ; 294(45): 16765-16775, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31551351

RESUMO

Epithelial Na+ channel (ENaC)-mediated Na+ transport has a key role in the regulation of extracellular fluid volume, blood pressure, and extracellular [K+]. Among the thousands of human ENaC variants, only a few exist whose functional consequences have been experimentally tested. Here, we used the Xenopus oocyte expression system to investigate the functional roles of four nonsynonymous human ENaC variants located within the ß7-strand and its adjacent loop of the α-subunit extracellular ß-ball domain. αR350Wßγ and αG355Rßγ channels exhibited 2.5- and 1.8-fold greater amiloride-sensitive currents than WT αßγ human ENaCs, respectively, whereas αV351Aßγ channels conducted significantly less current than WT. Currents in αH354Rßγ-expressing oocytes were similar to those expressing WT. Surface expression levels of three mutants (αR350Wßγ, αV351Aßγ, and αG355Rßγ) were similar to that of WT. However, three mutant channels (αR350Wßγ, αH354Rßγ, and αG355Rßγ) exhibited a reduced Na+ self-inhibition response. Open probability of αR350Wßγ was significantly greater than that of WT. Moreover, other Arg-350 variants, including αR350G, αR350L, and αR350Q, also had significantly increased channel activity. A direct comparison of αR350W and two previously reported gain-of-function variants revealed that αR350W increases ENaC activity similarly to αW493R, but to a much greater degree than does αC479R. Our results indicate that αR350W along with αR350G, αR350L, and αR350Q, and αG355R are novel gain-of-function variants that function as gating modifiers. The location of these multiple functional variants suggests that the αENaC ß-ball domain portion that interfaces with the palm domain of ßENaC critically regulates ENaC gating.


Assuntos
Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Espaço Extracelular/metabolismo , Ativação do Canal Iônico/genética , Canais Epiteliais de Sódio/química , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Domínios Proteicos
11.
J Biol Chem ; 293(27): 10757-10766, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29743244

RESUMO

The Caenorhabditis elegans MEC-4/MEC-10 channel mediates the worm's response to gentle body touch and is activated by laminar shear stress (LSS) when expressed in Xenopus oocytes. Substitutions at multiple sites within the second transmembrane domain (TM2) of MEC-4 or MEC-10 abolish the gentle touch response in worms, but the roles of these residues in mechanosensing are unclear. The present study therefore examined the role of specific MEC-4 and MEC-10 TM2 residues in the channel's response to LSS. We found that introducing mutations within the TM2 of MEC-4 or MEC-10 not only altered channel activity, but also affected the channel's response to LSS. This response was enhanced by Cys substitutions at selected MEC-4 sites (Phe715, Gly716, Gln718, and Leu719) between the degenerin and the putative amiloride-binding sites in this subunit. In contrast, the LSS response was largely blunted in MEC-10 variants bearing single Cys substitutions in the regions preceding and following the amiloride-binding site (Gly677-Leu681), as well as with four MEC-10 touch-deficient mutations that introduced charged residues into the TM2 domain. An enhanced response to LSS was observed with a MEC-10 mutation in the putative selectivity filter. Overall, MEC-4 or MEC-10 mutants that altered the channel's LSS response are primarily clustered between the degenerin site and the selectivity filter, a region that probably forms the narrowest portion of the channel pore. Our results suggest that pore-lining residues of MEC-4 and MEC-10 have important yet different roles in tuning the channel's response to mechanical forces.


Assuntos
Aminoácidos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Membrana/metabolismo , Estresse Mecânico , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Células Cultivadas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Mutação , Oócitos/citologia , Oócitos/metabolismo , Conformação Proteica , Homologia de Sequência , Xenopus laevis/crescimento & desenvolvimento
12.
Am J Physiol Renal Physiol ; 314(3): F483-F492, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187368

RESUMO

Epithelial Na+ channel (ENaC) subunits undergo N-linked glycosylation in the endoplasmic reticulum where they assemble into an αßγ complex. Six, 13, and 5 consensus sites (Asn-X-Ser/Thr) for N-glycosylation reside in the extracellular domains of the mouse α-, ß-, and γ-subunits, respectively. Because the importance of ENaC N-linked glycans has not been fully addressed, we examined the effect of preventing N-glycosylation of specific subunits on channel function, expression, maturation, and folding. Heterologous expression in Xenopus oocytes or Fischer rat thyroid cells with αßγ-ENaC lacking N-linked glycans on a single subunit reduced ENaC activity as well as the inhibitory response to extracellular Na+. The lack of N-linked glycans on the ß-subunit also precluded channel activation by trypsin. However, channel activation by shear stress was N-linked glycan independent, regardless of which subunit was modified. We also discovered that the lack of N-linked glycans on any one subunit reduced the total and surface levels of cognate subunits. The lack of N-linked glycans on the ß-subunit had the largest effect on total levels, with the lack of N-linked glycans on the γ- and α-subunits having intermediate and modest effects, respectively. Finally, channels with wild-type ß-subunits were more sensitive to limited trypsin proteolysis than channels lacking N-linked glycans on the ß-subunit. Our results indicate that N-linked glycans on each subunit are required for proper folding, maturation, surface expression, and function of the channel.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Processamento de Proteína Pós-Traducional , Sódio/metabolismo , Animais , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Glicosilação , Mecanotransdução Celular , Potenciais da Membrana , Mutação , Conformação Proteica , Dobramento de Proteína , Transporte Proteico , Ratos Endogâmicos F344 , Relação Estrutura-Atividade , Tripsina/metabolismo , Xenopus laevis
13.
J Biol Chem ; 292(38): 15927-15938, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28768768

RESUMO

Paraoxonase-2 (PON-2) is a membrane-bound lactonase with unique anti-oxidative and anti-atherosclerotic properties. PON-2 shares key structural elements with MEC-6, an endoplasmic reticulum-resident molecular chaperone in Caenorhabditis elegans MEC-6 modulates the expression of a mechanotransductive ion channel comprising MEC-4 and MEC-10 in touch-receptor neurons. Because pon-2 mRNA resides in multiple rat nephron segments, including the aldosterone-sensitive distal nephron where the epithelial Na+ channel (ENaC) is expressed, we hypothesized that PON-2 would similarly regulate ENaC expression. We observed PON-2 expression in aquaporin 2-positive principal cells of the distal nephron of adult human kidney. PON-2 also co-immunoprecipitated with ENaC when co-expressed in HEK293 cells. When PON-2 was co-expressed with ENaC in Xenopus oocytes, ENaC activity was reduced, reflecting a reduction in ENaC surface expression. MEC-6 also reduced ENaC activity when co-expressed in Xenopus oocytes. The PON-2 inhibitory effect was ENaC-specific, as PON-2 had no effect on functional expression of the renal outer medullary potassium channel. PON-2 did not alter the response of ENaC to extracellular Na+, mechanical shear stress, or α-chymotrypsin-mediated proteolysis, suggesting that PON-2 did not alter the regulation of ENaC by these factors. Together, our data suggest that PON-2 regulates ENaC activity by modulating its intracellular trafficking and surface expression.


Assuntos
Arildialquilfosfatase/metabolismo , Canais Epiteliais de Sódio/metabolismo , Adulto , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Conservada , Canais Epiteliais de Sódio/química , Evolução Molecular , Regulação da Expressão Gênica , Células HEK293 , Humanos , Túbulos Renais Distais/metabolismo , Camundongos , Oócitos/metabolismo , Subunidades Proteicas/metabolismo , Ratos
14.
Bio Protoc ; 7(8)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28670605

RESUMO

Mechanically-gated ion channels play key roles in mechanotransduction, a process that translates physical forces into biological signals. Epithelial and endothelial cells are exposed to laminar shear stress (LSS), a tangential force exerted by flowing fluids against the wall of vessels and epithelia. The protocol outlined herein has been used to examine the response of ion channels expressed in Xenopus oocytes to LSS (Hoger et al., 2002; Carattino et al., 2004; Shi et al., 2006). The Xenopus oocyte is a reliable system that allows for the expression and chemical modification of ion channels and regulatory proteins (George et al., 1989; Palmer et al., 1990; Sheng et al., 2001; Carattino et al., 2003). Therefore, this technique is suitable for studying the molecular mechanisms that allow flow-activated channels to respond to LSS.

15.
J Biol Chem ; 291(27): 14012-14022, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189943

RESUMO

Mechanotransduction in Caenorhabditis elegans touch receptor neurons is mediated by an ion channel formed by MEC-4, MEC-10, and accessory proteins. To define the role of these subunits in the channel's response to mechanical force, we expressed degenerin channels comprising MEC-4 and MEC-10 in Xenopus oocytes and examined their response to laminar shear stress (LSS). Shear stress evoked a rapid increase in whole cell currents in oocytes expressing degenerin channels as well as channels with a MEC-4 degenerin mutation (MEC-4d), suggesting that C. elegans degenerin channels are sensitive to LSS. MEC-10 is required for a robust LSS response as the response was largely blunted in oocytes expressing homomeric MEC-4 or MEC-4d channels. We examined a series of MEC-10/MEC-4 chimeras to identify specific domains (amino terminus, first transmembrane domain, and extracellular domain) and sites (residues 130-132 and 134-137) within MEC-10 that are required for a robust response to shear stress. In addition, the LSS response was largely abolished by MEC-10 mutations encoded by a touch-insensitive mec-10 allele, providing a correlation between the channel's responses to two different mechanical forces. Our findings suggest that MEC-10 has an important role in the channel's response to mechanical forces.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Membrana/metabolismo , Estresse Mecânico , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Xenopus
16.
Am J Physiol Renal Physiol ; 305(11): F1585-92, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24107424

RESUMO

The epithelial sodium channel (ENaC) is comprised of three homologous subunits. Channels composed solely of α- and ß-subunits (αß-channels) exhibit a very high open probability (Po) and reduced sensitivity to amiloride, in contrast to channels composed of α- and γ-subunits or of all three subunits (i.e., αγ- and αßγ-channels). A mutant channel comprised of α- and ß-subunits, and a chimeric γ-subunit where the region immediately preceding (ß12 and wrist) and encompassing the second transmembrane domain (TM2) was replaced with the corresponding region of the ß-subunit (γ-ßTM2), displayed characteristics reminiscent of αß-channels, including a reduced amiloride potency of block and a loss of Na(+) self-inhibition (reflecting an increased Po). Substitutions at key pore-lining residues of the γ-ßTM2 chimera enhanced the Na(+) self-inhibition response, whereas key γ-subunit substitutions reduced the response. Furthermore, multiple sites within the TM2 domain of the γ-subunit were required to confer high amiloride potency. In summary, we have identified novel pore-lining residues of the γ-subunit of ENaC that are important for proper channel gating and its interaction with amiloride.


Assuntos
Amilorida/farmacologia , Canais Epiteliais de Sódio/metabolismo , Ativação do Canal Iônico , Transporte de Íons/efeitos dos fármacos , Mutação/genética , Sequência de Aminoácidos , Animais , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Transporte de Íons/genética , Camundongos , Dados de Sequência Molecular , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Xenopus
17.
Curr Mol Pharmacol ; 6(1): 28-34, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23547932

RESUMO

Epithelial Na(+) channels (ENaCs) are comprised of subunits that have large extracellular regions linked to membrane spanning domains where the channel pore and gate reside. A variety of external factors modify channel activity by interacting at sites within extracellular regions that lead to conformational changes that are transmitted to the channel gate and alter channel open probability. Our review addresses two external factors that have important roles in regulating channel activity, proteases and laminar shear stress.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Peptídeo Hidrolases/metabolismo , Resistência ao Cisalhamento , Sítios de Ligação , Bloqueadores do Canal de Sódio Epitelial/química , Bloqueadores do Canal de Sódio Epitelial/metabolismo , Canais Epiteliais de Sódio/química , Estrutura Terciária de Proteína
18.
J Biol Chem ; 287(53): 44027-35, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23144453

RESUMO

The epithelial Na(+) channel (ENaC) is regulated by a variety of external factors that alter channel activity by inducing conformational changes within its large extracellular region that are transmitted to the gate. The wrist domain consists of small linkers connecting the extracellular region to the transmembrane domains, where the channel pore and gate reside. We employed site-directed mutagenesis combined with two-electrode voltage clamp to investigate the role of the wrist domain in channel gating in response to extracellular factors. Channel inhibition by external Na(+) was reduced by selected mutations within the wrist domain of the α subunit, likely reflecting an increase in channel open probability. The most robust changes were observed when Cys was introduced at αPro-138 and αSer-568, sites immediately adjacent to the palm domain. In addition, one of these Cys mutants exhibited an enhanced response to shear stress. In the context of channels that have a low open probability due to retention of an inhibitory tract, the response to external Na(+) was reduced by Cys substitutions at both αPro-138 and αSer-568. We observed a significant correlation between changes in channel inhibition by external Na(+) and the relative response to shear stress for the α subunit mutants that were examined. Mutants that exhibited reduced inhibition by external Na(+) also showed an enhanced response to shear stress. Together, our data suggest that the wrist domain has a role in modulating the channel's response to external stimuli.


Assuntos
Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/metabolismo , Sequência de Aminoácidos , Animais , Canais Epiteliais de Sódio/genética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Resistência ao Cisalhamento , Sódio/metabolismo , Xenopus laevis
19.
J Biol Chem ; 287(19): 15439-44, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22408250

RESUMO

The epithelial sodium channel (ENaC) is regulated by multiple extracellular stimuli, including shear stress. Previous studies suggest that the extracellular finger domains of ENaC α and γ subunits contain allosteric regulatory modules. However, the role of the finger domain in the shear stress response is unknown. We examined whether mutations of specific residues in the finger domain of the α subunit altered the response of channels to shear stress. We observed that Trp substitutions at multiple sites within the tract αLys-250-αLeu-290 altered the magnitude or kinetics of channel activation by shear stress. Consistent with these findings, deletion of two predicted peripheral ß strands (αIle-251-αTyr-268) led to slower channel activation by shear stress, suggesting that these structures participate in the shear stress response. The effects of mutations on the shear stress response did not correlate with their effects on allosteric Na(+) inhibition (i.e. Na(+) self-inhibition), indicating a divergence within the finger domain regarding mechanisms by which the channel responds to these two external stimuli. This result contrasts with well correlated effects we previously observed at sites near the extracellular mouth of the pore, suggesting mechanistic convergence in proximity to the pore. Our results suggest that the finger domain has an important role in the modulation of channel activity in response to shear stress.


Assuntos
Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/fisiologia , Ativação do Canal Iônico/fisiologia , Estrutura Terciária de Proteína , Animais , Sítios de Ligação/genética , Canais Epiteliais de Sódio/genética , Feminino , Ativação do Canal Iônico/genética , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Modelos Moleculares , Mutação , Oócitos/citologia , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Sódio/metabolismo , Sódio/farmacologia , Estresse Mecânico , Xenopus
20.
J Biol Chem ; 286(17): 14753-61, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21367859

RESUMO

The activity of the epithelial sodium channel (ENaC) is modulated by multiple external factors, including proteases, cations, anions and shear stress. The resolved crystal structure of acid-sensing ion channel 1 (ASIC1), a structurally related ion channel, and mutagenesis studies suggest that the large extracellular region is involved in recognizing external signals that regulate channel gating. The thumb domain in the extracellular region of ASIC1 has a cylinder-like structure with a loop at its base that is in proximity to the tract connecting the extracellular region to the transmembrane domains. This loop has been proposed to have a role in transmitting proton-induced conformational changes within the extracellular region to the gate. We examined whether loops at the base of the thumb domains within ENaC subunits have a similar role in transmitting conformational changes induced by external Na(+) and shear stress. Mutations at selected sites within this loop in each of the subunits altered channel responses to both external Na(+) and shear stress. The most robust changes were observed at the site adjacent to a conserved Tyr residue. In the context of channels that have a low open probability due to retention of an inhibitory tract, mutations in the loop activated channels in a subunit-specific manner. Our data suggest that this loop has a role in modulating channel gating in response to external stimuli, and are consistent with the hypothesis that external signals trigger movements within the extracellular regions of ENaC subunits that are transmitted to the channel gate.


Assuntos
Canais Epiteliais de Sódio/química , Ativação do Canal Iônico/fisiologia , Proteínas do Tecido Nervoso/química , Canais de Sódio/química , Canais Iônicos Sensíveis a Ácido , Animais , Canais Epiteliais de Sódio/fisiologia , Camundongos , Mutação , Oócitos , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Sódio , Estresse Mecânico , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA