RESUMO
The coupled green energy and chemical production by photocatalysis represents a promising sustainable pathway, which poses great challenges for the multifunction integration of catalytic systems. Here we show a promising green photocatalyst design using Cu-ZnIn2S4 nanosheets and carbon dots as building units, which enables the integration of reaction, mass transfer, and separation functions in the nano-space, mimicking a nanoreactor. This function integration results in great activity promotion for benzyl alcohol oxidation coupled H2 production, with H2/benzaldehyde production rates of 45.95/46.47 mmol g-1 h-1, 36.87 and 36.73 times to pure ZnIn2S4, respectively, owning to the enhanced charge accumulation and mass transfer according to in-situ spectroscopies and computational simulations of the built-in electrical field. Near-unity selectivity of benzaldehyde is achieved via the effective separation enabled by the Cu(II)-mediated conformation flipping of the intermediates and subsequent π-π conjugation. This work demonstrates an inspiring proof-of-concept nanoreactor design of photocatalysts for coupled sustainable systems.
RESUMO
To address the wear issues faced by the leg components of offshore platforms in harsh marine conditions, a Ni60-WC composite coating was fabricated on the surface of E690 high-strength steel using laser cladding. The microstructure, elemental distribution, microhardness, and tribological properties of the composite coating were characterized and tested using XRD (X-ray diffraction), SEM (scanning electron microscopy), EDS (energy-dispersive spectrometry), a microhardness tester, and a multifunctional tribometer. The study focused on the microstructure and tribological properties of the Ni60-WC composite coating. The results show that the composite coating primarily consists of γ-(Fe, Ni), WC, W2C, M23C6, and M6C phases, with cellular and dendritic structures at the top. WC and W2C, along with M23C6 and M6C, are precipitated from the W and C elements. The average hardness of the composite coating reached 569.5 HV, representing a 103% increase over the substrate hardness. The prepared composite coating exhibited a 32.6% increase in corrosion potential compared to the substrate. Additionally, the corrosion current density was reduced by 62.0%, indicating a significant enhancement in the corrosion resistance of the composite coating. The friction coefficient of the composite coating was reduced by 17.4% compared to the substrate, and wear volume was reduced by 79%, significantly enhancing the tribological performance of the coating due to reduced abrasive wear and fatigue wear.
RESUMO
BACKGROUND: Recent studies have identified the presence of cancer-associated fibroblasts (CAFs) within glioblastoma (GBM), yet their biological roles and underlying mechanisms remain poorly understood. This study aimed to construct a CAF-related prognostic model to guide patient prognosis and treatment strategies. METHOD: We employed various bioinformatics methods, including enrichment analysis, Weighted Gene Co-expression Network Analysis (WGCNA), Lasso regression analysis, and machine learning techniques such as XGBoost and Random Forest, to develop a novel risk index termed CAFscore. Patients were stratified into high and low CAFscore groups for subsequent survival analysis. The area under the curve (AUC) and concordance index (C-index) for CAFscore were calculated and compared against other clinical characteristics and existing prognostic models. Drug sensitivity assessments were conducted using the Oncopredict package. Functional validation of key genes was performed through scratch and invasion assays in GBM cells. RESULTS: Our analyses revealed four core CAF-related genes, leading to the establishment of CAFscore. Notably, patients in the high CAFscore group exhibited significantly reduced survival and exhibited enrichment in epithelial-mesenchymal transition (EMT) and inflammation response pathways. Furthermore, CAFscore showed a significant negative correlation with the sensitivity to irinotecan and its analogs, while demonstrating a positive correlation with sensitivity to 505,124 (a TGFßRI inhibitor). LRP10 emerged as a central gene within the CAFscore, displaying markedly elevated expression in GBM and a strong association with CAF infiltration. Silencing LRP10 significantly inhibited the invasive capabilities of GBM cells. CONCLUSION: This study presented the first CAF related prognostic model (CAFscore) in GBM, and demonstrated that the model could effectively guide patient prognosis and potentially inform personalized treatment strategies. The core gene of CAFscore, LRP10, was significantly overexpressed in GBM and might play a pivotal role in regulating CAF infiltration as well as tumor invasion and metastasis, highlighting LRP10 as a promising therapeutic target for GBM management.
RESUMO
To study the influence of an elbow inlet on the rotating stall characteristics of a waterjet propulsion pump (WJPP), a three-dimensional internal flow field in a WJPP under a straight-pipe inlet and elbow inlet is numerically simulated. By comparing the hydraulic performance of WJPP under the two inlet conditions, the internal relationship between the inlet mode and the flow pattern in the pump is clarified. Based on unsteady pressure fluctuation characteristics and wavelet analysis, the influence of the inlet mode on the rotating stall is revealed, and the stall transient propagation characteristics under critical stall conditions are analyzed. The disturbance effects of the inlet channel geometry disappear under low flow rate conditions, the main disturbance is induced by the high-speed countercurrent, and the flow pattern under the elbow inlet is better than that under the straight-pipe inlet. Under the straight-pipe inlet, the single-stall nucleus in the WJPP temporarily experiences a low-frequency and high-amplitude disturbance, which subsequently transforms into a mode of multi-stall nuclei with high-frequency circumferential disturbance. Under the elbow inlet, the rotating stall always maintains a mode of high-amplitude and low-frequency disturbance, which represents the transient characteristics of a single stall core propagating in the circumferential direction inside the channel. The results of this study have a reference value for structural design optimization in a WJPP.
RESUMO
Renewable electricity shows immense potential as a driving force for the carbon dioxide reduction reaction (CO2RR) in production of formate (HCOO-) at industrial current density, providing a promising path for value-added chemicals and chemical manufacturing. However, achieving high selectivity and stable production of HCOO- at industrial current density remains a challenge. Here, we present a robust Bi0.6Cu0.4 NSs catalyst capable of regenerating necessary catalytic core (Bi-O) through cyclic voltammetry (CV) treatment. Notably, at 260â mA cm-2, faradaic efficiency of HCOO- reaches an exceptional selectivity to 99.23 %, maintaining above 90 % even after 400â h, which is longest reaction time reported at the industrial current density. Furthermore, in stability test, the catalyst was constructed by CV reconstruction to achieve stable and efficient production of HCOO-. In 20â h reaction test, the catalyst has a rate of HCOO- production of 13.24â mmol m-2 s-1, a HCOO- concentration of 1.91â mol L-1, and an energy consumption of 129.80â kWh kmol-1. Inâ situ Raman spectroscopy reveals the formation of Bi-O structure during the gradual transformation of catalyst from Bi0.6Cu0.4 NBs to Bi0.6Cu0.4 NSs. Theoretical studies highlight the pivotal role of Bi-O structure in modifying the adsorption behavior of reaction intermediates, which further reduces energy barrier for *OCHO conversion in CO2RR.
RESUMO
Axons have intrinsically poor regenerative capacity in the mature central nervous system (CNS), leading to permanent neurological impairments in individuals. There is growing evidence that exercise is a powerful physiological intervention that can obviously enhance cell rejuvenate capacity, but its molecular mechanisms that mediate the axonal regenerative benefits remain largely unclear. Using the eye as the CNS model, here it is first indicated that placing mice in an exercise stimulation environment induced DNA methylation patterns and transcriptomes of retinal ganglion cell, promoted axon regeneration after injury, and reversed vision loss in aged mice. These beneficial effects are dependent on the DNA demethylases TET3-mediated epigenetic effects, which increased the expression of genes associated with the regenerative growth programs, such as STAT3, Wnt5a, Klf6. Exercise training also shows with the improved mitochondrial and metabolic dysfunction in retinas and optic nerves via TET3. Collectively, these results suggested that the increased regenerative capacity induced by enhancing physical activity is mediated through epigenetic reprogramming in mouse model of optic nerve injury and in aged mouse. Understanding the molecular mechanism underlying exercise-dependent neuronal plasticity led to the identification of novel targets for ameliorating pathologies associated with etiologically diverse diseases.
RESUMO
The oxygen evolution reaction (OER), which occurs in a variety of energy-related devices, necessitates optimization of the reaction pathways for efficient and scalable deployment. Nevertheless, fully harnessing the advanced structure of synthetic electrocatalysts remains a significant challenge due to the inevitable surface reconstruction process during OER. Here we present an efficient and flexible method to control the surface reconstruction process by engineering an electrolyte containing trace Co2+ cation. This controllable reconstruction process enhances fast charge transfer, facilitates electroactive species transport, and exposes the inner active site, significantly improving the OER kinetics. An impressive 60% increase in current density at an applied potential of 2.2 V (vs RHE) confirms its remarkable contribution to the performance. The identification of cation-triggered reconstruction for the formation of a well-defined surface provides a novel insight into understanding electrolyte engineering and offers a viable pathway to address activity and stable concerns in electrocatalysts.
RESUMO
Photocatalysts based on single atoms (SAs) modification can lead to unprecedented reactivity with recent advances. However, the deactivation of SAs-modified photocatalysts remains a critical challenge in the field of photocatalytic CO2 reduction. In this study, we unveil the detrimental effect of CO intermediates on Cu single atoms (Cu-SAs) during photocatalytic CO2 reduction, leading to clustering and deactivation on TiO2. To address this, we developed a novel Cu-SAs anchored on Au porous nanoparticles (CuAu-SAPNPs-TiO2) via a vectored etching approach. This system not only enhances CH4 production with a rate of 748.8â µmol â g-1 â h-1 and 93.1 % selectivity but also mitigates Cu-SAs clustering, maintaining stability over 7â days. This sustained high performance, despite the exceptionally high efficiency and selectivity in CH4 production, highlights the CuAu-SAPNPs-TiO2 overarching superior photocatalytic properties. Consequently, this work underscores the potential of tailored SAs-based systems for efficient and durable CO2 reduction by reshaping surface adsorption dynamics and optimizing the thermodynamic behavior of the SAs.
RESUMO
The creation of frustrated Lewis pairs on catalyst surface is an effective strategy for tuning CO2 activation. The critical step in the formation of frustrated Lewis pairs is the spatial effect of proximal Lewis acid-Lewis base pairs. Here, we demonstrate a facile surface functionalization methodology that enables hydrogen bonding between N and H atoms to mediate the construction of frustrated Lewis pairs in poly(heptazine imide), thereby increasing the propensity to activate CO2 molecules. Experimental and theoretical results show that the construction of active hydrogen bonding regions can facilitate the bending of CO2 molecules. Furthermore, the delocalization of electron clouds induced by the hydrogen bonding-mediated frustrated Lewis pairs can promote the heterolytic cleavage and photocatalytic conversion of CO2. This work highlights the potential of utilizing hydrogen bonding-mediated strategy in heterogeneously photocatalytic activation of CO2 over polymer materials.
RESUMO
Alkaline water electrolysis is apreferred technology for large-scale green hydrogen production. For most active transition metal-based catalysts during anodic oxygen evolution reaction (OER), the atomic structure of the anodic catalysts' surface often undergoes reconstruction to optimize the reaction path and enhance their catalytic activity. The design and maintenance of highly active sites during this reconstruction process remain critical and challenging for most OER catalysts. In this study, we explored the effects of crystal structures in pre-catalysts on surface reconstruction at low applied potential. Through experimental observation and theoretical calculation, we found out that catalysts with specific crystal structures exhibit superior surface remodeling ability, which enables them to better adapt to the conditions of the oxygen evolution reaction and achieve efficient catalysis. The discharge process enables the formation of abundant phosphorus vacancies on the surface, which in turn affects the efficiency of the entire oxygen evolution reaction. The optimized crystal structure of the catalyst results in an increase as high as 58.5 mA/cm2 for Ni5P4, which is twice as high as that observed for Ni2P. These results provide essential theoretical foundations and technical guidance for designing more efficient catalysts for oxygen evolution reactions.
RESUMO
Owing to the quantum size effect and high redox activity, quantum dots (QDs) play very essential roles toward electrochemical energy storage. However, it is very difficult to obtain different types and uniformly dispersed high-active QDs in a stable conductive microenvironment, because QDs prepared by traditional methods are mostly dissolved in solution or loaded on the surface of other semiconductors. Herein, dual-type semiconductor QDs (Co9S8 and CdS) are skillfully constructed within the interlayer of ultrathin-layered double hydroxides. In particular, the expandable interlayer provides a very suitable confined space for the growth and uniform dispersion of QDs, where Co9S8 originates from in situ transformation of cobalt atoms in laminate and CdS is generated from interlayer pre-embedding Cd2+. Meanwhile, XAFS and GGA+U calculations are employed to explore and prove the mechanism of QDs formation and energy storage characteristics as compared to surface loading QDs. Significantly, the hybrid supercapacitors achieve a high energy density of 329.2 µWh cm-2, capacitance retention of 99.1%, and coulomb efficiency of 96.9% after 22 000 cycles, which is superior to the reported QDs-based supercapacitors. These findings provide unique insights for designing and developing stable, ordered, and highly active QDs.
RESUMO
Background: Enhanced recovery after surgery (ERAS) has been widely used in adult surgery. However, few studies have reported the efficacy of ERAS in paediatric patients with Meckel's diverticulum (MD), the aim of the study was to prospectively evaluate the safety and efficacy of ERAS in treating MD. Methods: A prospective randomised controlled study of children with MD admitted to our hospital from Jan 1, 2021 to Dec 31, 2023 were conducted, we developed and implemented an ERAS program for this patients. All cases were strictly selected according to the inclusion and exclusion criteria. Among these patients, they were randomly assigned to the ERAS group or the traditional (TRAD) group with random number table row randomization. The main observational indicators were operation time, intraoperative hemorrhage, FLACC pain scale results on 2â h, 6â h, 12â h, 24â h after surgery, length of postoperative stay (LOPS), time to first defecation, time to first eating after surgery, time to discontinuation of intravenous infusion, total treatment cost, incidence of postoperative complications, 30-day readmission rate and parental satisfaction rate. Results: A total of 50 patients underwent Meckel's diverticulectomy during this period, 7 patients were excluded, 23 patients were assigned to the ERAS group and 20 patients were assigned to the TRAD group. There were no significant differences in demographic data and operation time, intraoperative hemorrhage. The FLACC pain scale results on 2â h, 6â h, 12â h, 24â h after surgery were significantly lower in the ERAS group. The LOPS was 6.17 ± 0.89 days in the ERAS group and 8.30 ± 1.26 days in the TRAD group, resulting in a significantly shorter LOPS in ERAS group. ERAS could also reduce the first postoperative defecation time, the time to first eating after surgery and the time to discontinuation of intravenous infusion. The treatment cost was decreased in the ERAS group. The rate of complications and 30-day readmission were not significantly different between the two groups. Conclusions: In this single-center study, the ERAS protocol for patients with MD requiring surgery was safe and effective.
RESUMO
Owing to the specific electronic-redistribution and spatial proximity, diatomic catalysts (DACs) have been identified as principal interest for efficient photoconversion of CO2 into C2H4. However, the predominant bottom-up strategy for DACs synthesis has critically constrained the development of highly ordered DACs due to the random distribution of heteronuclear atoms, which hinders the optimization of catalytic performance and the exploration of actual reaction mechanism. Here, an up-bottom ion-cutting architecture is proposed to fabricate the well-defined DACs, and the superior spatial proximity of CuAu diatomics (DAs) decorated TiO2 (CuAu-DAs-TiO2) is successfully constructed due to the compact heteroatomic spacing (2-3 Å). Owing to the profoundly low C-C coupling energy barrier of CuAu-DAs-TiO2, a considerable C2H4 production with superior sustainability is achieved. Our discovery inspires a novel up-bottom strategy for the fabrication of well-defined DACs to motivate optimization of catalytic performance and distinct deduction of heteroatom synergistically catalytic mechanism.
RESUMO
Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.
RESUMO
Near-infrared (NIR) light accounts for about half of the solar spectrum, and the effective utilization of low-energy NIR light is an important but challenging task in the field of photocatalysis. Molecular semiconductor photocatalytic systems (MSPSs) are highly tunable, available and stable, and are considered to be one of the most promising ways to achieve efficient NIR hydrogen production. Here, we demonstrate efficient dual-excitation in MSPS consisting of ZnIn2S4-x (ZIS1-x) with sulfur vacancies and phytic acid nickel (PA-Ni), which differs from other NIR-responsive photosensitized systems. The system achieves a hydrogen evolution reaction (HER) of 119.85 µmol h-1 g-1 at λ > 800 nm illumination, which is an excellent performance among all reported NIR catalysts and even outperforms the noble metal catalysts when compared to the reported literature. The superior activity is attributed to the unique charge dynamics and higher carrier concentration of the system. This work demonstrates the potential of dual-excitation systems for efficient utilization of low-energy NIR light.
RESUMO
Surface reconstruction is widely existed on the surface of transition metal-based catalysts under operando oxygen evolution reaction (OER) condition. The design and optimize the reconstruction process are essential to achieve high electrochemical active surface and thus facilitate the reaction kinetics, whereas still challenge. Herein, we exploit electrolyte engineering to regulate reconstruction on the surface of Fe2O3 catalysts under operando OER conditions. The intentional added cations in electrolyte can participate the reconstruction process and realize a desirable crystalline to amorphous structure conversion, contributing abundant well-defined active sites. Spectroscopic measurements and density functional theory calculation provide insight into the underlying role of amorphous structure for electron transfer, mass transport, and intermediate adsorption. With the assistant of Co2+ cations, the enhanced current density as large as 17.9 % can be achieved at 2.32 V (vs RHE). The present results indicate the potential of electrolyte engineering for regulating the reconstruction process and provide a generalized in-situ strategy for advanced catalysts design.
RESUMO
Development of highly efficient and metal-free photocatalysts for bacterial inactivation under natural light is a major challenge in photocatalytic antibiosis. Herein, we developed an acidizing solvent-thermal approach for inserting a non-conjugated ethylenediamine segment into the conjugated planes of 3,4,9,10-perylene tetracarboxylic anhydride to generate a photocatalyst containing segregated π-conjugation units (EDA-PTCDA). Under natural light, EDA-PTCDA achieved 99.9 % inactivation of Escherichia coli and Staphylococcus aureus (60 and 45â min), which is the highest efficiency among all the natural light antibacterial reports. The difference in the surface potential and excited charge density corroborated the possibility of a built-in electron-trap effect of the non-conjugated segments of EDA-PTCDA, thus forming a highly active EDA-PTDA/bacteria interface. In addition, EDA-PTCDA exhibited negligible toxicity and damage to normal tissue cells. This catalyst provides a new opportunity for photocatalytic antibiosis under natural light conditions.
Assuntos
Elétrons , Luz , Staphylococcus aureus , CatáliseRESUMO
Indium (In) ions were diffused into a TiO2 (In-TiO2) photoelectrode via a facile and efficient flame doping method resulting in improved photo-induced carrier separation. The dopant concentration was systematically investigated, and a volcano-type relationship between the dopant concentration and photoelectrochemical (PEC) performance was observed. The optimum incident photon-to-current efficiency and photocurrent density of In-TiO2 were 38.6% and 0.70 mA cm-2 at 1.23 V, respectively, 2.1 and 11.2 times the values of pristine TiO2, respectively. In doping resulted in improved charge separation and lower surface adsorption energies for reactant molecules, as evidenced by experimental and computational methods.
RESUMO
OBJECTIVES: Most patients with intrahepatic cholangiocarcinoma (ICC) present with locally advanced or metastatic disease. We report the combined potency of transarterial chemoembolization (TACE), lenvatinib and programmed cell death-1 (PD-1) inhibitors in patients with advanced and metastatic ICC. METHODS: This retrospective study enrolled 32 patients with advanced or metastatic ICC between January 2017 and August 2021. Eligible patients had received gemcitabine-based TACE combined with lenvatinib with or without PD-1 inhibitor in any line of treatment. Overall survival (OS) and progression-free survival (PFS) were estimated using the Kaplan-Meier method. Risk factors associated with OS were assessed using univariate and multivariate Cox regression analyses. RESULTS: Eighteen patients received a combination of TACE and lenvatinib (TL group) and 14 patients received TACE and lenvatinib plus aPD-1 inhibitor (TLP group). The median follow-up time was 19.8 months (range 1.8-37.8). The median OS was 25.3 months (95% CI 18.5-32.1) and the median PFS was 7.3 months (95% CI 4.9-9.7). Partial response was achieved in 10 patients (31.3%), and stable disease in 13 (40.6 %) with disease control rate of 71.9%. The median OS was comparable in the TL and TLP groups (22.4 vs 27.3 months, respectively; hazard ratio: 1.245, 95% CI 0.4245-3.653; p = 0.687). The regression analysis revealed that, regardless of treatment group, a favorable independent prognostic factor for OS was HBV/HCV infection (HR: 0.063, 95% CI 0.009-0.463; p = 0.007). There were no treatment-related deaths and 81.3% of study participants experienced adverse events (AEs), the majority of which were of moderate severity (71.8% Grade 1-2). CONCLUSIONS: Gemcitabine-based TACE plus lenvatinib with or without aPD-1 inhibitor was well tolerated and provided promising therapeutic outcomes for patients with advanced and metastatic ICC. ADVANCES IN KNOWLEDGE: Monotherapy with TACE, or Lenvatinib, or PD-1 inhibitors has shown limited efficacy over standard first-line chemotherapy in advanced and metastatic ICC. This work suggested the combined potency of these treatments and well-tolerance.