Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732908

RESUMO

This paper presents a new technique for estimating the two-dimensional direction of departure (2D-DOD) and direction of arrival (2D-DOA) in bistatic uniform planar array Multiple-Input Multiple-Output (MIMO) radar systems. The method is based on the reduced-dimension (RD) MUSIC algorithm, aiming to achieve improved precision and computational efficiency. Primarily, this pioneering approach efficiently transforms the four-dimensional (4D) estimation problem into two-dimensional (2D) searches, thus reducing the computational complexity typically associated with conventional MUSIC algorithms. Then, exploits the spatial diversity of array response vectors to construct a 4D spatial spectrum function, which is crucial in resolving the complex angular parameters of multiple simultaneous targets. Finally, the objective is to simplify the spatial spectrum to a 2D search within a 4D measurement space to achieve an optimal balance between efficiency and accuracy. Simulation results validate the effectiveness of our proposed algorithm compared to several existing approaches, demonstrating its robustness in accurately estimating 2D-DOD and 2D-DOA across various scenarios. The proposed technique shows significant computational savings and high-resolution estimations and maintains high precision, setting a new benchmark for future explorations in the field.

2.
Sci Total Environ ; 926: 172024, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547989

RESUMO

The use of reclaimed water for urban river replenishment has raised concerns regarding its impact on water quality and aquatic ecosystems. This study aims to reveal the improvements seen in an urban river undergoing a practical water eco-remediation after being replenished with reclaimed water. A one-year monitoring of water quality, phytoplankton, and zooplankton was carried out in Dongsha River undergoing eco-remediation in Beijing, China. The results showed that compared to the unrestored river, the concentrations of COD, NH4+-N, TP, and TN decreased by 28.22 ± 7.88 %, 40.24 ± 11.77 %, 44.17 ± 17.29 %, and 28.66 ± 10.39 % in the restoration project area, respectively. The concentration of Chlorophyll-a in the restoration area was maintained below 40 µg/L. During summer, when algal growth is vigorous, the density of Cyanophyta in the unrestored river decreased from 46.84 × 104cells/L to 16.32 × 104cells/L in the restored area, while that of Chlorophyta decreased from 41.61 × 104cells/L to 11.87 × 104cells/L, a reduction of 65.16 % and 71.47 %, respectively. The dominant phytoplankton species were replaced with Bacillariophyta, such as Synedra sp. and Nitzschia sp., indicating that the restoration of aquatic plants reduces the risk of Cyanophyta blooms. Zooplankton species also changed in the restoration area, especially during summer. The density of pollution-tolerant Rotifer and Protozoa decreased by 31.06 % and 27.22 %, while the density of clean water indicating Cladocera increased by 101.19 %. We further calculated the diversity and evenness index of phytoplankton and zooplankton within and outside the restoration area. The results showed that the Shannon-Weaver index for phytoplankton and zooplankton in the restoration area was 2.1 and 1.91, which was higher than those in the river (1.84 and 1.82). This further confirmed that aquatic plant restoration has positive effects. This study can provide a practical reference and theoretical basis for the implementation of water ecological restoration projects in other reclaimed water rivers in China.


Assuntos
Cianobactérias , Diatomáceas , Animais , Qualidade da Água , Pequim , Ecossistema , Rios , China , Fitoplâncton , Zooplâncton , Monitoramento Ambiental
3.
Appl Opt ; 63(7): 1737-1743, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437275

RESUMO

In this paper, we investigate a 1018 nm gain-switched ytterbium-doped fiber oscillator at a low repetition rate in terms of theory and experiment. Theoretically, a numerical model applicable to a 1018 nm gain-switched ytterbium-doped fiber laser was established. The influence of the pump peak power and active fiber lengths on the 1018 nm gain-switched ytterbium-doped fiber laser was numerically simulated. Experimentally, a compact 1018 nm all-fiber-structured pulsed laser oscillator is constructed, in which a pulse width of 110 ns and a single-pulse energy of 0.1 mJ were obtained. Moreover, the experimental results are in agreement with the numerical simulation ones. To the best of our knowledge, this is the first time that gain-switching technology has been applied to 1018 nm fiber lasers to generate nanosecond pulsed lasers. The model and experimental results can provide a reference for the engineering design of the same type of low repetition rate fiber lasers below the kilohertz level.

4.
Aging (Albany NY) ; 16(7): 5916-5928, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38536006

RESUMO

BACKGROUND: Fluorouracil (5-FU) might produce serious cardiac toxic reactions. miRNA-199a-5p is a miRNA primarily expressed in myocardial cells and has a protective effect on vascular endothelium. Under hypoxia stress, the expression level of miRNA-199a-5p was significantly downregulated and is closely related to cardiovascular events such as coronary heart disease, heart failure, and hypertension. We explored whether 5-FU activates the endoplasmic reticulum stress ATF6 pathway by regulating the expression of miRNA-199a-5p in cardiac toxicity. METHODS: This project established a model of primary cardiomyocytes derived from neonatal rats and treated them with 5-FU in vitro. The expression of miRNA-199a-5p and its regulation were explored in vitro and in vivo. RESULTS: 5-FU decreases the expression of miRNA-199a-5p in cardiomyocytes, activates the endoplasmic reticulum stress ATF6 pathway, and increases the expression of GRP78 and ATF6, affecting the function of cardiomyocytes, and induces cardiac toxicity. The rescue assay further confirmed that miRNA-199a-5p supplementation can reduce the cardiotoxicity caused by 5-FU, and its protective effect on cardiomyocytes depends on the downregulation of the endoplasmic reticulum ATF6 signaling pathway. CONCLUSIONS: 5-FU can down-regulate expression of miRNA-199a-5p, then activate the endoplasmic reticulum stress ATF6 pathway, increase the expression of GRP78 and ATF6, affect the function of cardiomyocytes, and induce cardiac toxicity.


Assuntos
Fator 6 Ativador da Transcrição , Cardiotoxicidade , Regulação para Baixo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Fluoruracila , MicroRNAs , Miócitos Cardíacos , Transdução de Sinais , Animais , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Ratos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fluoruracila/toxicidade , Fluoruracila/efeitos adversos , Cardiotoxicidade/metabolismo , Cardiotoxicidade/genética , Cardiotoxicidade/etiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Cultivadas , Ratos Sprague-Dawley , Masculino
5.
Small ; : e2311511, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319022

RESUMO

The reductive transformation of carbon dioxide (CO2 ) into high-valued N-formamides matches well with the atom economy and the sustainable development intention. Nevertheless, developing a noble-free metal catalyst under mild reaction conditions is desirable and challenging. Herein, a caged metal-organic framework (MOFs) [H2 N(CH3 )2 ]2 {[Ni3 (µ3 -O)(XN)(BDC)3 ]·6DMF}n (1) (XN = 6″-(pyridin-4-yl)-4,2″:4″,4″'-terpyridine), H2 BDC = terephthalic acid) is harvested, presenting high thermal and chemical stabilities. Catalytic investigation reveals that 1 as a renewable noble-free MOFs catalyst can catalyze the CO2 reduction conversion with aromatic amines tolerated by broad functional groups at least ten times, resulting in various formamides in excellent yields and selectivity under the mildest reaction system (room temperature and 1 bar CO2 ). Density functional theory (DFT) theoretical studies disclose the applicable reaction path, in which the CO2 hydrosilylation process is initiated by the [Ni3 ] cluster interaction with CO2 via η2 -C, O coordination mode. This work may open up an avenue to seek high-efficiency noble-free catalysts in CO2 chemical reduction into high value-added chemicals.

6.
Opt Lett ; 49(4): 891-894, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359209

RESUMO

A high-power all-fiber radially polarized laser system is demonstrated, in which an integrated nanograting mode convertor (S-wave plate) is used for the generation of radially polarized beam. Experimentally, a 1-W radially polarized beam was used as the seed laser, whose mode purity and mode extinction ratio (MER) were 96.5% and 98.3%, respectively. A single-stage few-mode fiber amplifier was employed to boost the 1-W seed laser to an average power of 113.2 W, when the pump power was 160 W. The corresponding slope efficiency and beam quality factor (M2) were approximately 72% and 2.3%, respectively. Moreover, the mode purity and MER of the amplified radially polarized laser were measured to be 95.7% and 97%, respectively. To the best of our knowledge, this is the highest output power from an all-fiber radially polarized laser system without obvious degradations of the mode purity and MER.

7.
ACS Appl Mater Interfaces ; 15(46): 53951-53964, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37960858

RESUMO

The interfacial void and delamination between the hydrogel electrolyte and flexible electrode caused by the inconformal contact and weak adhesion lead to serious performance degradation of solid-state-sandwiched supercapacitors (SCs) upon repetitive deformation. Herein, we propose a hydrogel polymer electrolyte (HPE) engineering strategy for enhancing the interfacial adhesion (Γ) to achieve extremely durable SCs via the soft, tough, and self-adhesive HPE. Using a self-cross-linked poly(N-hydroxyethyl acrylamide)/H3PO4 (PHEAA/H3PO4) HPE as the model, the interfacial adhesion between HPE and polyaniline (PANI)-modified carbon cloth (CC) electrode (CC/PANI) reaches up to 556 J/m2, leading to excellent durability of electrochemical performance under long-term repetitive deformations. The as-assembled sandwiched SC retains 94.14 and 93.62% of initial capacitance after 180° bending and twisting for 100,000 cycles, respectively. Furthermore, benefiting from the addition of H3PO4, the flexible sandwiched SC displays excellent tolerance to low temperatures and delivers a capacitance retention of 98.03% after 180° bending for 10,000 cycles at -20 °C. This work highlights the importance of interfacial adhesion engineering for the design of extremely deformation-tolerable SCs.

8.
Reprod Biol ; 23(3): 100782, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37320994

RESUMO

Long non-coding RNA has been shown to mediate the progression of polycystic ovary syndrome (PCOS). However, the role and mechanism of Prader-Willi region nonprotein coding RNA 2 (PWRN2) in PCOS progression remain unclear. In our study, Sprague-Dawley rat was injected with dehydroepiandrosterone to mimic PCOS rat models. HE staining was used to assess the number of benign granular cells, and serum insulin and hormone levels were detected by ELISA kit. The expression of PWRN2 was examined by qRT-PCR. Ovarian granulosa cells (GCs) proliferation and apoptosis were examined by CCK-8 assay and flow cytometry. The protein levels of apoptosis markers and Alpha thalassemia retardation syndrome X-linked (ATRX) were determined by western blot. The interaction between lysine-specific demethylase 1 (LSD1) and PWRN2 or ATRX was confirmed by RIP and ChIP assay. Our data showed that PWRN2 was upregulated and ATRX was downregulated in the ovarium tissues and serum of PCOS rat. PWRN2 knockdown promoted GCs proliferation and inhibited apoptosis. In the mechanism, PWRN2 inhibited ATRX transcription by binding with LSD1. In addition, downregulation of ATRX also eliminated the effect of sh-PWRN2 on GCs growth. In conclusion, our data suggested that PWRN2 might restrain GCs growth to promote PCOS progression, which was achieved by binding with LSD1 to inhibit ATRX transcription.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , RNA Longo não Codificante , Animais , Feminino , Ratos , Apoptose , Proliferação de Células/fisiologia , Células da Granulosa , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , MicroRNAs/genética , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Ratos Sprague-Dawley , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Nuclear Ligada ao X/metabolismo
9.
PLoS One ; 18(4): e0285016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37115798

RESUMO

Guinea pigs are a valuable animal model for studying various diseases, including reproductive diseases. However, techniques for generating embryos via embryo engineering in guinea pigs are limited; for instance, in vitro maturation (IVM) technique is preliminary for guinea pig oocytes. In this study, we aimed to establish and optimize an IVM method for guinea pig oocytes by investigating various factors, such as superovulation induced by different hormones, culture supplementation (e.g., amino acids, hormone, and inhibitors), culture conditions (e.g., oocyte type, culture medium type, and treatment time), and in vivo hCG stimulation. We found that oocytes collected from guinea pigs with superovulation induced by hMG have a higher IVM rate compared to those collected from natural cycling individuals. Moreover, we found that addition of L-cysteine, cystine, and ROS in the culture medium can increase the IVM rate. In addition, we demonstrated that in vivo stimulation with hCG for 3-8 h can further increase the IVM rate. As a result, the overall IVM rate of guinea pig oocytes under our optimized conditions can reach ~69%, and the mature oocytes have high GSH levels and normal morphology. In summary, we established an effective IVM method for guinea pig oocytes by optimizing various factors and conditions, which provides a basis for embryo engineering using guinea pigs as a model.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Oócitos , Feminino , Cobaias , Animais , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/metabolismo , Oogênese , Aminoácidos/metabolismo , Cisteína/farmacologia , Cisteína/metabolismo
10.
ACS Appl Mater Interfaces ; 14(34): 39299-39310, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35972900

RESUMO

Hydrogels are often used to fabricate strain sensors; however, they also suffer from freezing at low temperatures and become dry during long-time storage. Encapsulation of hydrogels with elastomers is one of the methods to solve these problems although the adhesion between hydrogels and elastomers is usually low. In this work, using bovine serum protein (BSA) as the natural globulin model and glycerol/H2O as the mixture solvent, BSA/polyacrylamide organohydrogels (BSA/PAAm OHGs) were prepared by a facile photopolymerization approach. At the optimal condition, BSA/PAAm OHG demonstrated not only high toughness but also tough adhesion properties, which could strongly adhere to various substrates, such as glass, metals, rigid polymeric materials (even poly(tetrafluoroethylene), i.e., PTFE), and soft elastomers. Moreover, BSA/PAAm OHG was flexible and showed tough adhesion at -20 °C. The toughening mechanism and the adhesive mechanism were proposed. On being encapsulated by poly(dimethylsiloxane) (PDMS), it illustrated good antidrying performance. After introducing a conductive filler, the encapsulated BSA/PAAm OHG could be used as a strain sensor to detect human motions. This work provides a better understanding of the adhesive mechanism of natural protein-based organohydrogels.


Assuntos
Adesivos , Globulinas , Adesivos/química , Elastômeros , Condutividade Elétrica , Humanos , Hidrogéis/química
12.
Nano Lett ; 22(11): 4459-4467, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608193

RESUMO

Multimodal sensor with high sensitivity, accurate sensing resolution, and stimuli discriminability is very desirable for human physiological state monitoring. A dual-sensing aerogel is fabricated with independent pyro-piezoresistive behavior by leveraging MXene and semicrystalline polymer to assemble shrinkable nanochannel structures inside multilevel cellular walls of aerogel for discriminable temperature and pressure sensing. The shrinkable nanochannels, controlled by the melt flow-triggered volume change of semicrystalline polymer, act as thermoresponsive conductive channels to endow the pyroresistive aerogel with negative temperature coefficient of resistance of -10.0% °C-1 and high accuracy within 0.2 °C in human physiological temperature range of 30-40 °C. The flexible cellular walls, working as pressure-responsive conductive channels, enable the piezoresistive aerogel to exhibit a pressure sensitivity up to 777 kPa-1 with a detectable pressure limit of 0.05 Pa. The pyro-piezoresistive aerogel can detect the temperature-dependent characteristics of pulse pressure waveforms from artery vessels under different human body temperature states.


Assuntos
Polímeros , Condutividade Elétrica , Humanos , Monitorização Fisiológica , Temperatura
13.
Nat Commun ; 13(1): 1119, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236851

RESUMO

There is an urgent need for developing electromechanical sensor with both ultralow detection limits and ultrahigh sensitivity to promote the progress of intelligent technology. Here we propose a strategy for fabricating a soft polysiloxane crosslinked MXene aerogel with multilevel nanochannels inside its cellular walls for ultrasensitive pressure detection. The easily shrinkable nanochannels and optimized material synergism endow the piezoresistive aerogel with an ultralow Young's modulus (140 Pa), numerous variable conductive pathways, and mechanical robustness. This aerogel can detect extremely subtle pressure signals of 0.0063 Pa, deliver a high pressure sensitivity over 1900 kPa-1, and exhibit extraordinarily sensing robustness. These sensing properties make the MXene aerogel feasible for monitoring ultra-weak force signals arising from a human's deep-lying internal jugular venous pulses in a non-invasive manner, detecting the dynamic impacts associated with the landing and take-off of a mosquito, and performing static pressure mapping of a hair.


Assuntos
Fenômenos Mecânicos , Animais , Humanos
14.
Mater Horiz ; 8(1): 250-258, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821303

RESUMO

Progress toward the development of wearable electromechanical sensors with durable and reliable sensing performance is critical for emerging wearable integrated electronic applications. However, it remains a long-standing challenge to realize mechanically stretchable sensing materials with extremely durable and high-performing sensing ability due to the fundamental dilemma lying in the sensing mechanism. In this work, we proposed an in situ and rapid self-healing strategy through nano-confining a dynamic host-guest supramolecular polymer network in a graphene-based multilevel nanocomposite matrix to fabricate a mechanically stretchable and structurally healable sensing nanocomposite which is provided with intriguing sensing durability and sensitivity simultaneously. When repeatedly stretching and releasing the nanocomposite sensing film, the fast association kinetics of cyclodextrin and adamantane host-guest inclusion complexes and good polymer chain dynamics in the supramolecular polymer network endowed by the nanoconfinement effect enable autonomous and rapid repair of the micro-cracks in situ generated in the sensing material. As a result, our strain sensing devices can achieve an extremely high durability and retain stable sensing performance even after over 100 000 stretching-releasing cycles at large strain of 50%. Moreover, the brittle nature originated from the inorganically dominated structure in conjunction with the thermodynamically stable host-guest interactions and dynamic hydrogen bonds inside the multilevel nanocomposite allow the sensing material to exhibit an ultrahigh gauge factor over 1500 with a large working strain of 58%. This work presents a reliable approach for the construction of ultradurable and high-performing wearable electronics.


Assuntos
Nanocompostos , Materiais Inteligentes , Dispositivos Eletrônicos Vestíveis , Eletrônica , Polímeros
15.
J Agric Food Chem ; 69(47): 14103-14114, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784717

RESUMO

The mechanism of nanoselenium (nano-Se) improving the resistance induced by plant components to aphids is unclear. In this study, foliar sprayed nano-Se (5.0 mg/L) could significantly reduce the Sitobion avenae number (36%) compared with that in the control. Foliar application of nano-Se enhanced the antioxidant capacity by reducing malondialdehyde (MDA) and increasing GSH-Px, CAT, GSH, Pro, and VE concentrations in wheat seedlings. The phenylpropane pathway was activated by nano-Se biofortification, which increased apigenin and caffeic acid concentrations. The high-level expression of the related genes (TaBx1A, TaBx3A, TaBx4A, TaASMT2, and TaCOMT) induced the promotion of melatonin (88.6%) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) (64.3%). Different ratios of the secondary metabolites to nano-Se were taken to examine the effects on resistance of wheat to S. avenae. The results revealed that the combination of nano-Se and melatonin could achieve the best overall performance by reducing the S. avenae number by 52.2%. The study suggests that the coordinated applications of nano-Se and melatonin could more effectively improve the wheat resistance to aphids via the promotion of volatile organic compound synthesis and modulation in phenylpropane and indole metabolism pathways.


Assuntos
Afídeos , Animais , Afídeos/genética , Benzoxazinas , Folhas de Planta , Triticum/genética
16.
Nano Lett ; 20(8): 6176-6184, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32662654

RESUMO

Skin-mountable physical sensors that can individually detect mechanical deformations with high strain sensitivity within a broad working strain range and temperature variations with accurate temperature resolution are a sought-after technology. Herein, a stretchable temperature and strain dual-parameter sensor that can precisely detect and distinguish strain from temperature stimuli without crosstalk is developed, based on a printable titanium carbide (MXene)-silver nanowire (AgNW)-PEDOT:PSS-tellurium nanowire (TeNW) nanocomposite. With this dual-parameter sensor, strain and temperature are effectively transduced into electrically isolated signals through the electrically conductive MXene-AgNW and thermoelectric PEDOT:PSS-TeNW components, respectively. In addition, the synergistic effect between the MXene nanosheets and PEDOT:PSS also greatly enhances the stretchability and sensitivity of the sensing devices. These properties enable the nanocomposite to decouple responses between temperature and strain stimuli with an accurate temperature resolution of 0.2 °C and a gauge factor of up to 1933.3 in a working strain range broader than 60%.


Assuntos
Nanocompostos , Nanofios , Condutividade Elétrica , Prata , Temperatura
17.
ACS Nano ; 14(1): 1176-1184, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31904938

RESUMO

Lithium-iodine (Li-I2) batteries are promising candidates for next-generation electrochemical energy storage systems due to their high energy density and the excellent kinetic rates of I2 cathodes. However, dissolution of iodine and iodide has hindered their widespread adoption for practical applications. Herein, a Ti3C2Tx MXene foam with a three-dimensional hierarchical porous architecture is proposed as a cathode-electrolyte interface layer in Li-I2 batteries, enabling high-rate and ultrastable cycling performance at a high iodine content and loading mass. Theoretical calculations and empirical characterizations indicate that Ti3C2Tx MXene sheets with high metallic conductivity not only provide strong chemical binding with iodine species to suppress the shuttle effect but also facilitate fast redox reactions during cell cycling. As a result, the Li-I2 battery using a cathode with 70 wt % I2 cycled stably for over 1000 cycles at a rate of 2 C, even at an ultrahigh loading mass of 5.2 mg cm-2. To the best of the authors' knowledge, this is the highest reported loading at such a high iodine content. This work suggests that using a Ti3C2Tx MXene interface layer can enable the design and application of high-energy Li-I2 batteries.

18.
J Mass Spectrom ; 55(5): e4496, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31914483

RESUMO

Coumarin is one of the basic structures of naturally oxygen heterocyclic compound, which was investigated in this paper for its gas-phase fragmentation behaviors using electrospray quadrupole extractive orbitrap mass spectrometry in the positive mode. The possible fragmentation pathways were proposed based on electrospray ionization (ESI)- mass spectrometry (MS)/MS data and theory calculation. The elimination of two CO and CO2 was observed for protonated coumarin, which was followed by the formation of a stabilized seven-, six-, and five-membered ring carbocation by loss of C2H2. The possible protonation sites occurred at Oxygen 11 atom of coumarin were the main fragmentation pathways. The relative abundance of characteristic fragment ions and the energy-resolved breakdown curves were used to confirm the cleavage mechanism of protonated coumarin. The methodology and results of present work would contribute to the chemical structure identification of other coumarins.

19.
Trials ; 20(1): 719, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831051

RESUMO

BACKGROUND: Hair loss is one of the most common side effects of chemotherapy, and can cause persistent negative emotions, further affecting therapeutic effects and reducing the quality of life. However, there are no clinically safe and effective methods to solve the problem at present. Our previous clinical and animal studies showed that a medicinal and edible decoction, YH0618, could significantly promote hair growth in cancer patients after chemotherapy, without interfering with the anti-tumor effects of chemotherapy. Besides, the theory of Chinese Medicine believes that the "Essence of the kidney is reflected on the hair". Therefore, this study will further explore the efficacy of YH0618 granule on chemotherapy-induced hair loss in patients with breast cancer by a randomized, double-blind, multi-center clinical trial and elucidate the potential mechanism from the aspect of kidney deficiency or renal dysfunction. METHODS/DESIGN: Eligible breast cancer patients who will start chemotherapy will be randomly divided into group A (YH0618 granule) and group B (placebo). The chemotherapeutic agents contain taxanes or/and anthracyclines, and the chemotherapy regimen will be for at least six cycles with a cycle every 3 weeks. Subjects assigned to group A will receive YH0618 granules twice a day (6 g each time), 6 days a week, mixed with 300 ml warm water from the first to the fourth chemotherapy cycle. Subjects in group B will receive the placebo granule in the same manner. The primary outcome is the time point of occurrence of hair loss reaching grade II as assessed by the WHO Toxicity Grading Scale, and objective indices of hair quality and hair-follicle growth recorded by a hair and scalp detector before the fifth chemotherapy cycle. Secondary outcomes include changes of facial color and thumbnail color, grading of thumbnails ridging, assessment of quality life, level of fatigue, routine blood test results, hepatic and renal function, and certain medical indicators which can reflect kidney deficiency in Chinese Medicine. DISCUSSION: This research is of great significance for the treatment of cancer and improving the quality of life of cancer patients. The study may provide the most direct evidence for meeting clinical needs and lay a solid scientific foundation for later product development. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ID: ChiCTR1800020107. Registered on 14 December 2018.


Assuntos
Alopecia/tratamento farmacológico , Antineoplásicos/efeitos adversos , Neoplasias da Mama/patologia , Medicamentos de Ervas Chinesas/administração & dosagem , Glycine max/química , Adolescente , Adulto , Idoso , Alopecia/induzido quimicamente , Antraciclinas/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Método Duplo-Cego , Feminino , Glycyrrhiza/química , Humanos , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Taxoides/efeitos adversos , Resultado do Tratamento , Adulto Jovem
20.
ACS Cent Sci ; 5(8): 1352-1359, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31482117

RESUMO

Traditional covalent organic frameworks (COFs) are prepared via polymerization based on small molecular monomers. However, the employment of polymers as building blocks to construct COFs has not been reported yet. Herein, we create a new concept of polymer covalent organic frameworks (polyCOFs) formed by linear polymers as structural building blocks, which inherit the merits from both COFs and linear polymers. PolyCOFs represent a new category of porous COF materials that demonstrate good crystallinity and high stability. More importantly, benefiting from the flexibility and processability of a linear polymer, polyCOFs can spontaneously form defect-free, flexible, and freestanding membranes that exhibit excellent mechanical properties and undergo reversible mechanical transformation upon exposure to various organic vapors. For the first time, we demonstrated that polyCOF membranes can be used as artificial muscles to perform various complicated motions (e.g., lifting objects, doing "sit-ups") triggered by vapors. This study bridges the gap between one-dimensional amorphous linear polymers and crystalline polymer frameworks and paves a new avenue to prepare stimuli-responsive actuators using porous COF materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA