Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 181(13): 2012-2032, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38112022

RESUMO

BACKGROUND AND PURPOSE: Neuropathic pain affects millions of patients, but there are currently few viable therapeutic options available. Microtubule affinity-regulating kinases (MARKs) regulate the dynamics of microtubules and participate in synaptic remodelling. It is unclear whether these changes are involved in the central sensitization of neuropathic pain. This study examined the role of MARK1 or MARK2 in regulating neurosynaptic plasticity induced by neuropathic pain. EXPERIMENTAL APPROACH: A rat spinal nerve ligation (SNL) model was established to induce neuropathic pain. The role of MARKs in nociceptive regulation was assessed by genetically knocking down MARK1 or MARK2 in amygdala and systemic administration of PCC0105003, a novel small molecule MARK inhibitor. Cognitive function, anxiety-like behaviours and motor coordination capability were also examined in SNL rats. Synaptic remodelling-associated signalling changes were detected with electrophysiological recording, Golgi-Cox staining, western blotting and qRT-PCR. KEY RESULTS: MARK1 and MARK2 expression levels in amygdala and spinal dorsal horn were elevated in SNL rats. MARK1 or MARK2 knockdown in amygdala and PCC0105003 treatment partially attenuated pain-like behaviours along with improving cognitive deficit, anxiogenic-like behaviours and motor coordination in SNL rats. Inhibition of MARKs signalling reversed synaptic plasticity at the functional and structural levels by suppressing NR2B/GluR1 and EB3/Drebrin signalling pathways both in amygdala and spinal dorsal horn. CONCLUSION AND IMPLICATIONS: These results suggest that MARKs-mediated synaptic remodelling plays a key role in the pathogenesis of neuropathic pain and that pharmacological inhibitors of MARKs such as PCC0105003 could represent a novel therapeutic strategy for the management of neuropathic pain.


Assuntos
Neuralgia , Proteínas Serina-Treonina Quinases , Ratos Sprague-Dawley , Animais , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Masculino , Ratos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Nervos Espinhais
2.
J Cell Mol Med ; 27(23): 3928-3938, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37799103

RESUMO

Major depressive disorder (MDD) is a severe mental disorder associated with high rates of morbidity and mortality. Current first-line pharmacotherapies for MDD are based on enhancement of monoaminergic neurotransmission, but these antidepressants are still insufficient and produce significant side-effects. Consequently, the development of novel antidepressants and therapeutic targets is desired. Engeletin, a natural Smilax glabra rhizomilax derivative, is a compound with proven efficacy in treating ischemic stroke, yet its therapeutic effects and mechanisms for depression remain unexplored. The effects of engeletin were assessed in the forced swimming test (FST) and tail suspension test (TST) in mice. Engeletin was also investigated in the chronic restraint stress (CRS) mouse model of depression with fluoxetine (FLX) as the positive control. Changes in prefrontal cortex (PFC) spine density, synaptic plasticity-linked protein expressions and the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB)- mammalian target of rapamycin complex 1 (mTORC1) signalling pathway after chronic stress and engeletin treatment were then investigated. The TrkB and mTORC1 selective inhibitors, ANA-12 and rapamycin, respectively, were utilized to assess the engeletin's antidepressive mechanisms. Our data shows that engeletin exhibited antidepressant-like activity in the FST and TST in mice without affecting locomotor activity. Furthermore, it exhibited efficiency against the depression of CRS model. Moreover, it enhanced the BDNF-TrkB-mTORC1 pathway in the PFC during CRS and altered the reduction in dendritic spine density and levels of synaptic plasticity-linked protein induced by CRS. In conclusion, engeletin has antidepressant activity via activation of the BDNF-TrkB-mTORC1 signalling pathway and upregulation of PFC synaptic plasticity.


Assuntos
Transtorno Depressivo Maior , Plasticidade Neuronal , Receptor trkB , Animais , Humanos , Camundongos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Tirosina Quinases/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Receptor trkB/efeitos dos fármacos , Receptor trkB/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA