Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 754, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884960

RESUMO

BACKGROUND: Recent research shows that tumor-associated macrophages (TAMs) are the primary consumers of glucose in tumor tissue, surpassing that of tumor cells. Our previous studies revealed that inhibiting glucose uptake impairs the survival and tumor-promoting function of hypoxic TAMs, suggesting that glucose reduction by energy restriction (calorie restriction or short-term fasting) may has a significant impact on TAMs. The purpose of this study is to verify the effect of fasting-mimicking diet (FMD) on TAMs, and to determine whether FMD synergizes with anti-angiogenic drug apatinib via TAMs. METHODS: The effect of FMD on TAMs and its synergistic effects with apatinib were observed using an orthotopic mouse breast cancer model. An in vitro cell model, utilizing M2 macrophages derived from THP-1 cell line, was intended to assess the effects of low glucose on TAMs under hypoxic and normoxic conditions. Bioinformatics was used to screen for potential mechanisms of action, which were then validated both in vivo and in vitro. RESULTS: FMD significantly inhibit the pro-tumor function of TAMs in vivo and in vitro, with the inhibitory effect being more pronounced under hypoxic conditions. Additionally, the combination of FMD-mediated TAMs inhibition with apatinib results in synergistic anti-tumor activity. This effect is partially mediated by the downregulation of CCL8 expression and secretion by the mTOR-HIF-1α signaling pathway. CONCLUSIONS: These results support further clinical combination studies of FMD and anti-angiogenic therapy as potential anti-tumor strategies.


Assuntos
Inibidores da Angiogênese , Macrófagos Associados a Tumor , Animais , Camundongos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Hipóxia , Jejum , Dieta , Glucose , Microambiente Tumoral , Linhagem Celular Tumoral
2.
Mol Nutr Food Res ; 67(23): e2300380, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37771201

RESUMO

Energy restriction, including calorie restriction and fasting, has garnered significant attention for its potential therapeutic effects on a range of chronic diseases (such as diabetes, obesity, and cancer) and aging. Since macrophages are critical players in many diseases, their response to energy restriction may impact disease outcomes. However, the diverse metabolic patterns and functions of macrophages can lead to variability in the effects of energy restriction on macrophages across different tissues and disease states. This review outlines the effects of energy restriction on macrophages in several diseases, offering valuable guidance for future studies and insights into the clinical applications of calorie restriction and fasting.


Assuntos
Restrição Calórica , Jejum , Humanos , Jejum/fisiologia , Obesidade/metabolismo , Envelhecimento/fisiologia , Macrófagos/metabolismo
3.
Front Pharmacol ; 13: 932776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928271

RESUMO

Background: Emergence agitation (EA) is very common in paediatric patients during recovery from general anaesthesia, but underlying mechanisms remain unknown. This prospective study was designed to profile preoperative urine metabolites and identify potential biomarkers that can predict the occurrence of EA. Methods: A total of 224 patients were screened for recruitment; of those, preoperative morning urine samples from 33 paediatric patients with EA and 33 non-EA gender- and age-matched patients after being given sevoflurane general anaesthesia were analysed by ultra-high-performance liquid chromatography (UHPLC) coupled with a Q Exactive Plus mass spectrometer. Univariate analysis and orthogonal projection to latent structures squares-discriminant analysis (OPLS-DA) were used to analyse these metabolites. The least absolute shrinkage and selection operator (LASSO) regression was used to identify predictive variables. The predictive model was evaluated through the receiver operating characteristic (ROC) analysis and then further assessed with 10-fold cross-validation. Results: Seventy-seven patients completed the study, of which 33 (42.9%) patients developed EA. EA and non-EA patients had many differences in preoperative urine metabolic profiling. Sixteen metabolites including nine aromatic amino acid metabolites, acylcarnitines, pyridoxamine, porphobilinogen, 7-methylxanthine, and 5'-methylthioadenosine were found associated with an increased risk of EA, and they all exhibited higher levels in the EA group than in the non-EA group. The main metabolic pathways involved in these metabolic changes included phenylalanine, tyrosine and tryptophan metabolisms. Among these potential biomarkers, L-tyrosine had the best predictive value with an odds ratio (OR) (95% CI) of 5.27 (2.20-12.63) and the AUC value of 0.81 (0.70-0.91) and was robust with internal 10-fold cross-validation. Conclusion: Urinary aromatic amino acid metabolites are closely associated with EA in paediatric patients, and further validation with larger cohorts and mechanistic studies is needed. Clinical Trial Registration: clinicaltrials.gov, identifier NCT04807998.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34221070

RESUMO

BACKGROUND: Chuankezhi injection (CKZI) was an effective traditional Chinese medicine (TCM) injection in adjuvant bronchial asthma therapy. In this report, we used a network pharmacology method to reveal the mechanisms of CKZI for the treatment of asthma. METHODS: The candidate compounds in CKZI were determined by searching the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and China National Knowledge Infrastructure website (CNKI). The targets of candidate compounds were searched in the TCMSP, DrugBank 5.0, and SwissTargetPrediction. The disease targets were screened from the Online Mendelian Inheritance in Man (OMIM) and GeneCards. The overlapping gene symbols between candidate compounds and disease were filtered via a Venn diagram and were considered as potential targets. A protein-protein interaction (PPI) network and disease-related candidate compound-target-pathway (DC-T-P) network were visualized by Cytoscape 3.6.1. Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed by metascape to determine the pathways related to asthma. RESULTS: A total of 70 overlapping gene symbols were recognized as potential targets. Cytokines (IL6, TNF, and IL1B) and chemokines (CXCL8 and CCL2) could be recognized as hub genes. Asthma-related candidate compounds were mainly flavonoids, such as quercetin, luteolin, and kaempferol. The cytokine-mediated signaling pathway, cytokine receptor binding, and membrane craft were the most significant biological process (BP), molecular function (MF), and cellular component (CC) of GO function results, respectively. The relevant pathways of CKZI against asthma mainly include IL-17, NF-kappa B, HIF-1, calcium, and PI3K-Akt signaling pathways. CONCLUSION: Our research provided a theoretical basis for further investigating the mechanisms of CKZI in the treatment of asthma.

5.
J Ethnopharmacol ; 271: 113837, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33460755

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Saposhnikovia divaricata (SD), a Chinese crude drug, has long been recognized for therapeutic effect to rheumatoid arthritis (RA). At present, the mechanisms of SD treatment in RA have not been fully understood especially on the perspective of metabolomics. AIM OF THE STUDY: To study the pharmacodynamic effects of Saposhnikovia divaricata decoction on CIA rats, and explore the therapeutic mechanism by metabolomics methods. MATERIALS AND METHODS: Wistar rats were randomly divided into normal group, CIA model group, dexamethasone group and SD decoction groups (10 g crude drug/kg, 5 g crude drug/kg and 2.5 g crude drug/kg of SDD). Body weight, arthritis scores, serum cytokine levels and histopathological parameters of rats were assessed. A metabolomics method based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOFMS) was established to collect the metabolic profiles of rats and explore the metabolic changes that occurred after SDD treatment. RESULTS: SDD showed its protective effect on the affected joints, especially in the middle dosage group of SDD. Eighteen and 13 potential biomarkers for the SDD treatment of CIA rats were identified in the plasma and urine, respectively. SDD could regulate the disturbed metabolic pathways including tryptophan metabolism, glycerophospholipid catabolism, primary bile acid biosynthesis and fatty acid metabolism. CONCLUSIONS: In summary, SDD treatment could effectively alleviate symptoms of RA and regulate metabolic disorders in CIA rats.


Assuntos
Anti-Inflamatórios/farmacologia , Apiaceae/química , Artrite Experimental/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Animais , Articulação do Tornozelo/metabolismo , Articulação do Tornozelo/patologia , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Biomarcadores/sangue , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Colágeno/toxicidade , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Espectrometria de Massas , Ratos Wistar , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos
6.
Oncol Lett ; 20(6): 326, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33123242

RESUMO

Cisplatin resistance is an obstacle for the effective treatment of non-small cell lung cancer (NSCLC). The combined use of two or more chemotherapeutic agents displays advantages for the clinical treatment of drug-resistant lung cancer. The present study aimed to assess the synergy of the dual PI3K/Akt/mTOR signaling pathway inhibitor NVP-BEZ235 and cisplatin, a chemotherapeutic agent, on proliferation, apoptosis, cell cycle arrest and protein expression in cisplatin-resistant NSCLC A549/diamminedichloroplatinum resistance (DDP) cells. Cell proliferation was determined by performing Cell Counting Kit 8 and colony formation assays. Combination index (CI) was used to assess the combinatorial effects of NVP-BEZ235 and cisplatin. Cellular apoptosis and cell cycle arrest were detected via flow cytometry. Western blotting was performed to evaluate protein expression levels relative to ß-actin. Cisplatin and NVP-BEZ235 displayed the strongest synergy (CI50=0.23) at the mass ratio of 10:1. The half inhibitory concentrations of cisplatin and NVP-BEZ235 at 10:1 were 1.53 and 0.15 µg/ml, respectively. Compared with the control group, the combination of cisplatin and NVP-BEZ235 induced cell apoptosis and inhibited colony formation. Furthermore, compared with the control group, phosphorylation of Akt and p70S6 Kinase was significantly inhibited and cell cycle was arrested at G0G1 phase in the combination treatment group. The expression levels of drug efflux proteins, such as multidrug resistance-associated protein 1 and ATP-binding cassette sub-family G member 2, were significantly decreased when A549/DDP cells were treated with a combination of cisplatin and NVP-BEZ235 compared with the control group. Collectively, the present study indicated that the combined treatment of cisplatin and NVP-BEZ235 displayed synergistic antitumor effects on drug-resistant A549/DDP cells, by which the antiproliferative effects may occur via inhibition of the PI3K/Akt/mTOR signaling pathway and downregulation of drug efflux.

7.
J Proteome Res ; 18(9): 3259-3267, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31373204

RESUMO

Continuous exposure to cisplatin can induce drug resistance to limit efficacy; however, the underlying mechanisms correlated with cisplatin resistance are still unclear. Drug-sensitive A549 cells and cisplatin-resistant A549/DDP cells were used to explore the potential metabolic pathways and key targets associated with cisplatin resistance by integrating untargeted metabolomics with transcriptomics. Data are available via ProteomeXchange with identifier PXD013265. The results of comprehensive analyses showed that 19 metabolites were significantly changed in A549/DDP versus A549 cells, and some pathways had a close relationship with cisplatin resistance, such as the biosynthesis of aminoacyl-tRNA, glycerophospholipid metabolism, and glutathione metabolism. Moreover, transcriptomics analysis showed that the glutathione metabolism was also obviously affected in A549/DDP, which indicated that the glutathione metabolism played an important role in the process of drug resistance. Meanwhile, transcriptomics analysis suggested the four enzymes related to glutathione metabolism-CD13, GPX4, RRM2B, and OPLAH-as potential targets of cisplatin resistance in nonsmall cell lung cancer. Further studies identified the overexpression of these four enzymes in A549/DDP. The elucidation of mechanism and discovery of new potential targets may help us have a better understanding of cisplatin resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Metabolômica , Proteínas de Neoplasias/metabolismo , Transcriptoma/efeitos dos fármacos , Células A549 , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/classificação , Proteínas de Neoplasias/genética
8.
Front Aging Neurosci ; 11: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723404

RESUMO

Alzheimer's disease (AD) is the main type of dementia and is characterized by progressive memory loss and a notable decrease in cholinergic neuron activity. As classic drugs currently used in the clinic, acetylcholinesterase inhibitors (AChEIs) restore acetylcholine levels and relieve the symptoms of AD, but are insufficient at delaying the onset of AD. Based on the multi-target-directed ligand (MTDL) strategy, bis-(-)-nor-meptazinol (BIS-MEP) was developed as a multi-target AChEI that mainly targets AChE catalysis and the ß-amyloid (Aß) aggregation process. In this study, we bilaterally injected Aß oligomers and ibotenic acid (IBO) into the hippocampus of ICR mice and then subcutaneously injected mice with BIS-MEP to investigate its therapeutic effects and underlying mechanisms. According to the results from the Morris water maze test, BIS-MEP significantly improved the spatial learning and memory impairments in AD model mice. Compared with the vehicle control, the BIS-MEP treatment obviously inhibited the AChE activity in the mouse brain, consistent with the findings from the behavioral tests. The BIS-MEP treatment also significantly reduced the Aß plaque area in both the hippocampus and cortex, suggesting that BIS-MEP represents a direct intervention for AD pathology. Additionally, the immunohistochemistry and ELISA results revealed that microglia (ionized calcium-binding adapter molecule 1, IBA1) and astrocyte (Glial fibrillary acidic protein, GFAP) activation and the secretion of relevant inflammatory factors (TNFα and IL-6) induced by Aß were decreased by the BIS-MEP treatment. Furthermore, BIS-MEP showed more advantages than donepezil (an approved AChEI) as an Aß intervention. Based on our findings, BIS-MEP improved spatial learning and memory deficits in AD mice by regulating acetylcholinesterase activity, Aß deposition and the inflammatory response in the brain.

9.
Transl Neurodegener ; 7: 21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237878

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative brain disorder, which is the most common form of dementia. Intensive efforts have been made to find effective and safe treatment against AD. Acetylcholinesterase inhibitors (AChEIs) have been widely used for the treatment of mild to moderate AD. In this study, we investigated the effect of Bis(9)-(-)-Meptazinol (B9M), a novel potential dual-binding acetylcholinesterase (AChE) inhibitor, on learning and memory abilities, as well as the underlying mechanism in the APP/PS1 mouse model of AD. METHODS: B9M (0.1 µg/kg, 0.3 µg/kg, and 1 µg/kg) was administered by subcutaneous injection into eight-month-old APP/PS1 transgenic mice for four weeks. Morris water maze, nest-building and novel object recognition were used to examine learning and memory ability. Aß levels and Aß plaque were evaluated by ELISA and immunochemistry. RESULTS: Our results showed that chronic treatment with B9M significantly improved the cognitive function of APP/PS1 transgenic mice in the Morris water maze test, nest-building test and novel object recognition test. Moreover, B9M improved cognitive deficits in APP/PS1 mice by a mechanism that may be associated with its inhibition of the AChE activity, Aß plaque burden, levels of Aß and the consequent activation of astrocytes and microglia in the brain of APP/PS1 transgenic mice. Most of important, the most effective dose of B9M in the present study is 1 µg/kg, which is one thousand of the dosage of Donepezil acted as the control treatment. Furthermore, B9M reduced Aß plaque burden better than Donepezil. CONCLUSION: These results indicate that B9M appears to have potential as an effective AChE inhibitor for the treatment of AD with symptom-relieving and disease-modifying properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA