Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
2.
Adv Exp Med Biol ; 1433: 15-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751134

RESUMO

Lysine-specific demethylase 1 (LSD1) was the first histone demethylase discovered and the founding member of the flavin-dependent lysine demethylase family (KDM1). The human KDM1 family includes KDM1A and KDM1B, which primarily catalyze demethylation of histone H3K4me1/2. The KDM1 family is involved in epigenetic gene regulation and plays important roles in various biological and disease pathogenesis processes, including cell differentiation, embryonic development, hormone signaling, and carcinogenesis. Malfunction of many epigenetic regulators results in complex human diseases, including cancers. Regulators such as KDM1 have become potential therapeutic targets because of the reversibility of epigenetic control of genome function. Indeed, several classes of KDM1-selective small molecule inhibitors have been developed, some of which are currently in clinical trials to treat various cancers. In this chapter, we review the discovery, biochemical, and molecular mechanisms, atomic structure, genetics, biology, and pathology of the KDM1 family of lysine demethylases. Focusing on cancer, we also provide a comprehensive summary of recently developed KDM1 inhibitors and related preclinical and clinical studies to provide a better understanding of the mechanisms of action and applications of these KDM1-specific inhibitors in therapeutic treatment.


Assuntos
Lisina , Neoplasias , Humanos , Histonas , Neoplasias/tratamento farmacológico , Neoplasias/genética , Histona Desmetilases/genética , Histona Desmetilases/química , Histona Desmetilases/metabolismo
3.
Mol Psychiatry ; 28(10): 4421-4437, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37604976

RESUMO

Spouses of Alzheimer's disease (AD) patients are at a higher risk of developing incidental dementia. However, the causes and underlying mechanism of this clinical observation remain largely unknown. One possible explanation is linked to microbiota dysbiosis, a condition that has been associated with AD. However, it remains unclear whether gut microbiota dysbiosis can be transmitted from AD individuals to non-AD individuals and contribute to the development of AD pathogenesis and cognitive impairment. We, therefore, set out to perform both animal studies and clinical investigation by co-housing wild-type mice and AD transgenic mice, analyzing microbiota via 16S rRNA gene sequencing, measuring short-chain fatty acid amounts, and employing behavioral test, mass spectrometry, site-mutations and other methods. The present study revealed that co-housing between wild-type mice and AD transgenic mice or administrating feces of AD transgenic mice to wild-type mice resulted in AD-associated gut microbiota dysbiosis, Tau phosphorylation, and cognitive impairment in the wild-type mice. Gavage with Lactobacillus and Bifidobacterium restored these changes in the wild-type mice. The oral and gut microbiota of AD patient partners resembled that of AD patients but differed from healthy controls, indicating the transmission of microbiota. The underlying mechanism of these findings includes that the butyric acid-mediated acetylation of GSK3ß at lysine 15 regulated its phosphorylation at serine 9, consequently impacting Tau phosphorylation. Pending confirmative studies, these results provide insight into a potential link between the transmission of AD-associated microbiota dysbiosis and development of cognitive impairment, which underscore the need for further research in this area.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Disbiose , RNA Ribossômico 16S/genética , Cognição , Camundongos Transgênicos , Microbioma Gastrointestinal/genética
4.
Cell Rep ; 42(6): 112650, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37314930

RESUMO

METTL14 (methyltransferase-like 14) is an RNA-binding protein that partners with METTL3 to mediate N6-methyladenosine (m6A) methylation. Recent studies identified a function for METTL3 in heterochromatin in mouse embryonic stem cells (mESCs), but the molecular function of METTL14 on chromatin in mESCs remains unclear. Here, we show that METTL14 specifically binds and regulates bivalent domains, which are marked by trimethylation of histone H3 lysine 27 (H3K27me3) and lysine 4 (H3K4me3). Knockout of Mettl14 results in decreased H3K27me3 but increased H3K4me3 levels, leading to increased transcription. We find that bivalent domain regulation by METTL14 is independent of METTL3 or m6A modification. METTL14 enhances H3K27me3 and reduces H3K4me3 by interacting with and probably recruiting the H3K27 methyltransferase polycomb repressive complex 2 (PRC2) and H3K4 demethylase KDM5B to chromatin. Our findings identify an METTL3-independent role of METTL14 in maintaining the integrity of bivalent domains in mESCs, thus indicating a mechanism of bivalent domain regulation in mammals.


Assuntos
Cromatina , Histonas , Metiltransferases , Animais , Camundongos , Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/metabolismo , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Metiltransferases/metabolismo
5.
Res Sq ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162940

RESUMO

Spouses of Alzheimer's disease (AD) patients are at higher risk of developing AD dementia, but the reasons and underlying mechanism are unknown. One potential factor is gut microbiota dysbiosis, which has been associated with AD. However, it remains unclear whether the gut microbiota dysbiosis can be transmitted to non-AD individuals and contribute to the development of AD pathogenesis and cognitive impairment. The present study found that co-housing wild-type mice with AD transgenic mice or giving them AD transgenic mice feces caused AD-associated gut microbiota dysbiosis, Tau phosphorylation, and cognitive impairment. Gavage with Lactobacillus and Bifidobacterium restored these changes. The oral and gut microbiota of AD patient partners resembled that of AD patients but differed from healthy controls, indicating the transmission of oral and gut microbiota and its impact on cognitive function. The underlying mechanism of these findings includes that the butyric acid-mediated acetylation of GSK3ß at lysine 15 regulated its phosphorylation at serine 9, consequently impacting Tau phosphorylation. These results provide insight into a potential link between gut microbiota dysbiosis and AD and underscore the need for further research in this area.

6.
Cell Death Dis ; 14(2): 79, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732324

RESUMO

Multidrug resistance is a major challenge in treating advanced hepatocellular carcinoma (HCC). Although recent studies have reported that the multidrug resistance phenotype is associated with abnormal DNA methylation in cancer cells, the epigenetic mechanism underlying multidrug resistance remains unknown. Here, we reported that the level of 5-hydroxymethylcytosine (5-hmC) in human HCC tissues was significantly lower than that in adjacent liver tissues, and reduced 5-hmC significantly correlated with malignant phenotypes, including poor differentiation and microvascular invasion; additionally, loss of 5-hmC was related to chemotherapy resistance in post-transplantation HCC patients. Further, the 5-hmC level was regulated by ten-eleven translocation 2 (TET2), and the reduction of TET2 in HCC contributes to chemotherapy resistance through histone acetyltransferase P300/CBP-associated factor (PCAF) inhibition and AKT signaling hyperactivation. In conclusion, loss of 5-hmC induces chemotherapy resistance through PCAF/AKT axis and is a promising chemosensitivity prediction biomarker and therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt , 5-Metilcitosina
7.
Mol Cell ; 82(6): 1156-1168.e7, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35219383

RESUMO

N6-methyladenosine (m6A) methylation is co-transcriptionally deposited on mRNA, but a possible role of m6A on transcription remains poorly understood. Here, we demonstrate that the METTL3/METTL14/WTAP m6A methyltransferase complex (MTC) is localized to many promoters and enhancers and deposits the m6A modification on nascent transcripts, including pre-mRNAs, promoter upstream transcripts (PROMPTs), and enhancer RNAs. PRO-seq analyses demonstrate that nascent RNAs originating from both promoters and enhancers are significantly decreased in the METTL3-depleted cells. Furthermore, genes targeted by the Integrator complex for premature termination are depleted of METTL3, suggesting a potential antagonistic relationship between METTL3 and Integrator. Consistently, we found the Integrator complex component INTS11 elevated at promoters and enhancers upon loss of MTC or nuclear m6A binders. Taken together, our findings suggest that MTC-mediated m6A modification protects nascent RNAs from Integrator-mediated termination and promotes productive transcription, thus unraveling an unexpected layer of gene regulation imposed by RNA m6A modification.


Assuntos
Cromatina , Metiltransferases , Cromatina/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Sci Rep ; 12(1): 1046, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058489

RESUMO

Resistivity low-contrast oil pays are a kind of unconventional oil resource with no obvious difference in physical and electrical properties from water layers, which makes it difficult to be identified based on the characteristics of the geophysical well logging response. In this study, the support vector machine (SVM) technology was used to interpret the resistivity low-contrast oil pays in Chang 8 tight sandstone reservoir of Huanxian area, Ordos Basin. First, the input data sequences of logging curves were selected by analyzing the relationship between reservoir fluid types and logging data. Then, the SVM classification model for fluid identification and SVR regression model for reservoir parameter prediction were constructed. Finally, these two models were applied to interpret the resistivity low-contrast oil pays in the study area. The application results show that the fluid recognition accuracy of the SVM classification model is higher than that of the logging cross plot method, back propagation neural network method and radial basis function neural network method. The calculation accuracy of permeability and water saturation predicted by the SVR regression model is higher than that based on the experimental fitting model, which indicates that it is feasible to carry out logging interpretation and evaluation of the resistivity low-contrast oil pays by the SVM method. The research results not only provide an important reference and basis for the review of old wells but also provide technical support for the exploration and development of new strata.

9.
Cancers (Basel) ; 13(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064441

RESUMO

Activation of PD-1/PD-L1 checkpoint is a critical step for the immune evasion of malignant tumors including breast cancer. However, the epigenetic mechanism underlying the aberrant expression of PD-L1 in breast cancer cells remains poorly understood. To investigate the role of TET2 in the regulation of PD-L1 gene expression, quantitative reverse transcription PCR (RT-qPCR), Western blotting, chromatin immunoprecipitation (ChIP) assay and MeDIP/hMeDIP-qPCR were performed on MCF7 and MDA-MB-231 human breast cancer cells. Here, we reported that TET2 depletion upregulated PD-L1 gene expression in MCF7 cells. Conversely, ectopic expression of TET2 inhibited PD-L1 gene expression in MDA-MB-231 cells. Mechanistically, TET2 protein recruits histone deacetylases (HDACs) to PD-L1 gene promoter and orchestrates a repressive chromatin structure to suppress PD-L1 gene transcription, which is likely independent of DNA demethylation. Consistently, treatment with HDAC inhibitors upregulated PD-L1 gene expression in wild-type (WT) but not TET2 KO MCF7 cells. Furthermore, analysis of the CCLE and TCGA data showed a negative correlation between TET2 and PD-L1 expression in breast cancer. Taken together, our results identify a new epigenetic regulatory mechanism of PD-L1 gene transcription, linking the catalytic activity-independent role of TET2 to the anti-tumor immunity in breast cancer.

10.
Nature ; 591(7849): 317-321, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33505026

RESUMO

METTL3 (methyltransferase-like 3) mediates the N6-methyladenosine (m6A) methylation of mRNA, which affects the stability of mRNA and its translation into protein1. METTL3 also binds chromatin2-4, but the role of METTL3 and m6A methylation in chromatin is not fully understood. Here we show that METTL3 regulates mouse embryonic stem-cell heterochromatin, the integrity of which is critical for silencing retroviral elements and for mammalian development5. METTL3 predominantly localizes to the intracisternal A particle (IAP)-type family of endogenous retroviruses. Knockout of Mettl3 impairs the deposition of multiple heterochromatin marks onto METTL3-targeted IAPs, and upregulates IAP transcription, suggesting that METTL3 is important for the integrity of IAP heterochromatin. We provide further evidence that RNA transcripts derived from METTL3-bound IAPs are associated with chromatin and are m6A-methylated. These m6A-marked transcripts are bound by the m6A reader YTHDC1, which interacts with METTL3 and in turn promotes the association of METTL3 with chromatin. METTL3 also interacts physically with the histone 3 lysine 9 (H3K9) tri-methyltransferase SETDB1 and its cofactor TRIM28, and is important for their localization to IAPs. Our findings demonstrate that METTL3-catalysed m6A modification of RNA is important for the integrity of IAP heterochromatin in mouse embryonic stem cells, revealing a mechanism of heterochromatin regulation in mammals.


Assuntos
Montagem e Desmontagem da Cromatina , Heterocromatina/genética , Heterocromatina/metabolismo , Metiltransferases/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Retrovirus Endógenos/genética , Regulação da Expressão Gênica , Genes de Partícula A Intracisternal/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Camundongos , Proteína 28 com Motivo Tripartido/metabolismo
11.
Sci Adv ; 6(45)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33148658

RESUMO

Bone fracture is repaired predominantly through endochondral ossification. However, the regulation of endochondral ossification by key factors during fracture healing remains largely enigmatic. Here, we identify histone modification enzyme LSD1 as a critical factor regulating endochondral ossification during bone regeneration. Loss of LSD1 in Prx1 lineage cells severely impaired bone fracture healing. Mechanistically, LSD1 tightly controls retinoic acid signaling through regulation of Aldh1a2 expression level. The increased retinoic acid signaling in LSD1-deficient mice suppressed SOX9 expression and impeded the cartilaginous callus formation during fracture repair. The discovery that LSD1 can regulate endochondral ossification during fracture healing will benefit the understanding of bone regeneration and have implications for regenerative medicine.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Animais , Regeneração Óssea , Histona Desmetilases/genética , Camundongos , Osteogênese/genética , Tretinoína
12.
Transl Oncol ; 13(12): 100865, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32920330

RESUMO

Monocytic myeloid-derived suppressor cells (M-MDSCs), granulocytic MDSC (G-MDSCs) and regulatory T cells (Tregs) inhibit adaptive anti-tumor immunity and undermine the efficacy of anti-PD-1 therapy. However, the impact of anti-PD-1 treatment on these immunosuppressive cells has not been clearly defined in non-small cell lung cancer (NSCLC). In this retrospective study, 27 advanced NSCLC patients were divided into partial response (PR), stable disease (SD), and progressive disease (PD) groups. The impact of anti-PD-1 therapy on circulating Tregs, G-MDSCs, and M-MDSCs was assessed by flow cytometer. Here, we found that anti-PD-1 treatment boosted circulating Tregs levels, which presented the most remarkable augment during the first two therapeutic cycles, in NSCLC patients. In contrast, anti-PD-1 therapy did not overall change G-MDSCs and M-MDSCs levels. However, the PR group had a higher baseline level of M-MDSCs, which exhibited a significant decrease after the first cycle of anti-PD-1 treatment. Besides, M-MDSCs levels in the PR group were maintained at a low level in the following therapeutic cycles. Consistently, Tregs levels robustly increased in the syngeneic tumor model after anti-mouse PD-1 Ab treatment. Accordingly, M-MDSCs neutralization by anti-mouse ly6c Ab enhanced the anti-tumor efficacy of anti-PD-1 therapy in mice. Finally, the decreased M-MDSCs levels were associated with the enhanced effector CD8+ T cells expansion in the PR group and mice. In conclusion, anti-PD-1 therapy upregulates Tregs levels in NSCLC patients, and the M-MDSC levels are associated with the anti-tumor efficacy of anti-PD-1 treatment. Neutralization of M-MDSCs may be a promising option to augment anti-PD-1 therapy efficacy in NSCLC.

13.
EMBO Rep ; 21(10): e49425, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32929842

RESUMO

The host immune response is a fundamental mechanism for attenuating cancer progression. Here we report a role for the DNA demethylase and tumor suppressor TET2 in host anti-tumor immunity. Deletion of Tet2 in mice elevates IL-6 levels upon tumor challenge. Elevated IL-6 stimulates immunosuppressive granulocytic myeloid-derived suppressor cells (G-MDSCs), which in turn reduce CD8+ T cells upon tumor challenge. Consequently, systematic knockout of Tet2 in mice leads to accelerated syngeneic tumor growth, which is constrained by anti-PD-1 blockade. Removal of G-MDSCs by the anti-mouse Ly6g antibodies restores CD8+ T-cell numbers in Tet2-/- mice and reboots their anti-tumor activity. Importantly, anti-IL-6 antibody treatment blocks the expansion of G-MDSCs and inhibits syngeneic tumor growth. Collectively, these findings reveal a TET2-mediated IL-6/G-MDSCs/CD8+ T-cell immune response cascade that safeguards host adaptive anti-tumor immunity, offering a cell non-autonomous mechanism of TET2 for tumor suppression.


Assuntos
Células Supressoras Mieloides , Neoplasias , Imunidade Adaptativa , Animais , Linfócitos T CD8-Positivos , Contagem de Células , Proteínas de Ligação a DNA/genética , Dioxigenases , Camundongos , Neoplasias/genética , Proteínas Proto-Oncogênicas/genética
14.
Clin Epigenetics ; 12(1): 129, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854783

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common type of dementia, and patients with advanced AD frequently lose the ability to identify family members. The fusiform gyrus (FUS) of the brain is critical in facial recognition. However, AD etiology in the FUS of AD patients is poorly understood. New analytical strategies are needed to reveal the genetic and epigenetic basis of AD in FUS. RESULTS: A complex of new analytical paradigms that integrates an array of transcriptomes and methylomes of normal controls, AD patients, and "AD-in-dish" models were used to identify genetic and epigenetic signatures of AD in FUS. Here we identified changes in gene expression that are specific to the FUS in brains of AD patients. These changes are closely linked to key genes in the AD network. Profiling of the methylome (5mC/5hmC/5fC/5caC) at base resolution identified 5 signature genes (COL2A1, CAPN3, COL14A1, STAT5A, SPOCK3) that exhibit perturbed expression, specifically in the FUS and display altered DNA methylome profiles that are common across AD-associated brain regions. Moreover, we demonstrate proof-of-principle that AD-associated methylome changes in these genes effectively predict the disease prognosis with enhanced sensitivity compared to presently used clinical criteria. CONCLUSIONS: This study identified a set of previously unexplored FUS-specific AD genes and their epigenetic characteristics, which may provide new insights into the molecular pathology of AD, attributing the genetic and epigenetic basis of FUS to AD development.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Epigênese Genética/genética , Expressão Gênica/genética , Lobo Temporal/fisiopatologia , Humanos
15.
Sci Adv ; 6(29): eaba2113, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832624

RESUMO

Histone H3 point mutations have been identified in incurable pediatric brain cancers, but the mechanisms through which these mutations drive tumorigenesis are incompletely understood. Here, we provide evidence that RACK7 (ZMYND8) recognizes the histone H3.3 patient mutation (H3.3G34R) in vitro and in vivo. We show that RACK7 binding to H3.3G34R suppresses transcription of CIITA, which is the master regulator of MHC (major histocompatibility complex) class II molecules and genes involved in vesicular transport of MHC class II molecules to the cell surface, resulting in suppression of MHC class II molecule expression and transport. CRISPR-based knock-in correction of the H3.3G34R mutation in human pediatric glioblastoma (pGBM) cells significantly reduces overall RACK7 chromatin binding and derepresses the same set of genes as does knocking out RACK7 in the H3.3G34R pGBM cells. By demonstrating that H3.3G34R and RACK7 work together, our findings suggest a potential molecular mechanism by which H3.3G34R promotes cancer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Antígenos de Histocompatibilidade Classe II , Histonas , Proteínas Supressoras de Tumor , Neoplasias Encefálicas/genética , Criança , Glioblastoma/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Mutação , Proteínas Supressoras de Tumor/genética
16.
Nucleic Acids Res ; 48(9): 4827-4838, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32286661

RESUMO

NONO is a DNA/RNA-binding protein, which plays a critical regulatory role during cell stage transitions of mouse embryonic stem cells (mESCs). However, its function in neuronal lineage commitment and the molecular mechanisms of its action in such processes are largely unknown. Here we report that NONO plays a key role during neuronal differentiation of mESCs. Nono deletion impedes neuronal lineage commitment largely due to a failure of up-regulation of specific genes critical for neuronal differentiation. Many of the NONO regulated genes are also DNA demethylase TET1 targeted genes. Importantly, re-introducing wild type NONO to the Nono KO cells, not only restores the normal expression of the majority of NONO/TET1 coregulated genes but also rescues the defective neuronal differentiation of Nono-deficient mESCs. Mechanistically, our data shows that NONO directly interacts with TET1 via its DNA binding domain and recruits TET1 to genomic loci to regulate 5-hydroxymethylcytosine levels. Nono deletion leads to a significant dissociation of TET1 from chromatin and dysregulation of DNA hydroxymethylation of neuronal genes. Taken together, our findings reveal a key role and an epigenetic mechanism of action of NONO in regulation of TET1-targeted neuronal genes, offering new functional and mechanistic understanding of NONO in stem cell functions, lineage commitment and specification.


Assuntos
Cromatina/enzimologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Neurogênese/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/fisiologia , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Camundongos , Proteínas Proto-Oncogênicas/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA-Seq , Transcrição Gênica
17.
Natl Sci Rev ; 7(3): 671-685, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34692086

RESUMO

Central precocious puberty (CPP) refers to a human syndrome of early puberty initiation with characteristic increase in hypothalamic production and release of gonadotropin-releasing hormone (GnRH). Previously, loss-of-function mutations in human MKRN3, encoding a putative E3 ubiquitin ligase, were found to contribute to about 30% of cases of familial CPP. MKRN3 was thereby suggested to serve as a 'brake' of mammalian puberty onset, but the underlying mechanisms remain as yet unknown. Here, we report that genetic ablation of Mkrn3 did accelerate mouse puberty onset with increased production of hypothalamic GnRH1. MKRN3 interacts with and ubiquitinates MBD3, which epigenetically silences GNRH1 through disrupting the MBD3 binding to the GNRH1 promoter and recruitment of DNA demethylase TET2. Our findings have thus delineated a molecular mechanism through which the MKRN3-MBD3 axis controls the epigenetic switch in the onset of mammalian puberty.

19.
Sci Adv ; 5(8): eaaw2880, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31489368

RESUMO

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common untreatable form of dementia. Identifying molecular biomarkers that allow early detection remains a key challenge in the diagnosis, treatment, and prognostic evaluation of the disease. Here, we report a novel experimental and analytical model characterizing epigenetic alterations during AD onset and progression. We generated the first integrated base-resolution genome-wide maps of the distribution of 5-methyl-cytosine (5mC), 5-hydroxymethyl-cytosine (5hmC), and 5-formyl/carboxy-cytosine (5fC/caC) in normal and AD neurons. We identified 27 AD region-specific and 39 CpG site-specific epigenetic signatures that were independently validated across our familial and sporadic AD models, and in an independent clinical cohort. Thus, our work establishes a new model and strategy to study the epigenetic alterations underlying AD onset and progression and provides a set of highly reliable AD-specific epigenetic signatures that may have early diagnostic and prognostic implications.


Assuntos
Doença de Alzheimer/genética , Metilação de DNA/genética , DNA/genética , Epigênese Genética/genética , 5-Metilcitosina/metabolismo , Idoso , Doença de Alzheimer/metabolismo , Biomarcadores/metabolismo , Citosina/metabolismo , Progressão da Doença , Epigenômica/métodos , Feminino , Humanos , Masculino , Neurônios/metabolismo
20.
Theranostics ; 9(16): 4678-4687, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31367249

RESUMO

Rationale: PD1/PD-L1 immune checkpoint inhibitors have shown promising results for several malignancies. However, PD1/PD-L1 signaling and its therapeutic significance remains largely unknown in intrahepatic cholangiocarcinoma (ICC) cases with complex etiology. Methods: We investigated the expression and clinical significance of CD3 and PD1/PD-L1 in 320 ICC patients with different risk factors. In addition, we retrospectively analyzed 7 advanced ICC patients who were treated with PD1 inhibitor. Results: The cohort comprised 233 patients with HBV infection, 18 patients with hepatolithiasis, and 76 patients with undetermined risk factors. PD-L1 was mainly expressed in tumor cells, while CD3 and PD1 were expressed in infiltrating lymphocytes of tumor tissues. PD1/PD-L1 signals were activated in tumor tissues, and expression was positively correlated with HBV infection and lymph node invasion. More PD1+ T cells and higher PD-L1 expression were observed in tumor tissues of ICC patients with HBV infection compared to patients with hepatolithiasis or undetermined risk factors. More PD1+ T cells and/or high PD-L1 expression negatively impacted the prognosis of patients with HBV infection but not those with hepatolithiasis. Multivariate analysis showed PD1/PD-L1 expression was an independent indicator of ICC patient prognosis. Advanced ICC patients with HBV infection and less PD1+ T cells tended to have good response to anti-PD1 therapy. Conclusion: Hyperactivated PD1/PD-L1 signals in tumor tissues are a negative prognostic marker for ICCs after resection. HBV infection- and hepatolithiasis-related ICCs have distinct PD1/PD-L1 profiles. Further, PD1+ T cells could be used as a biomarker to predict prognosis and assay the efficiency of anti-PD1 immunotherapy in ICC patients with HBV infection.


Assuntos
Colangiocarcinoma/genética , Neoplasias Hepáticas/genética , Receptor de Morte Celular Programada 1/genética , Adulto , Idoso , Colangiocarcinoma/metabolismo , Colangiocarcinoma/virologia , Feminino , Vírus da Hepatite B/fisiologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA