Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Infect Drug Resist ; 17: 875-884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476769

RESUMO

Purpose: There are no satisfactory diagnostic biomarkers for sepsis. Accordingly, this study screened biomarkers valuable for sepsis diagnosis and prognosis using data-independent acquisition (DIA) combined with clinical data analysis. Patients and Methods: Serine protease inhibitor Kazal-type 1 (SPINK1) is a differentially expressed protein that was screened using DIA and bioinformatics in sepsis patients (n = 22) and healthy controls (n = 10). The plasma SPINK1 levels were detected using an enzyme-linked immunosorbent assay (ELISA) in an expanded population (sepsis patients, n = 52; healthy controls, n = 10). The diagnostic value of SPINK1 in sepsis was evaluated using receiver operating characteristic (ROC) curve analysis based on clinical data. The prognostic value of SPINK1 for sepsis was evaluated using correlation and survival analyses. Results: DIA quality control identified 78 differential proteins (72 upregulated and six downregulated), among which SPINK1 was highly expressed in sepsis. The ELISA results suggested that SPINK1 expression was significantly elevated in the sepsis group (P < 0.05). ROC analysis of SPINK1 yielded an area under the curve (AUC) of 0.9096. Combining SPINK1 with procalcitonin (PCT) for ROC analysis yielded an AUC of 1. SPINK1 expression was positively correlated with the Sequential Organ Failure Assessment (SOFA) score (r = 3497, P = 0.0053) and APACHE II score (r = 3223, P = 0.0106). High plasma SPINK1 protein expression was negatively correlated with the 28-day survival rate of patients with sepsis (P = 0.0149). Conclusion: The plasma of sepsis patients contained increased SPINK1 protein expression. Combining SPINK1 with PCT might have a high diagnostic value for sepsis. SPINK1 was associated with the SOFA score, APACHE II score, and the 28-day survival rate in patients with sepsis.

2.
J Colloid Interface Sci ; 657: 46-53, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38029528

RESUMO

Lithium-oxygen batteries (LOBs) with a theoretical energy density of up to 3500 Wh kg-1 hold a promise for the next-generation high-energy-density batteries. However, the slow oxygen reduction/evolution kinetics at the cathode limits the performance of Li-air batteries. The rational design of efficient catalysts is essential for the improvement of oxygen electrode reaction kinetics. Herein, we report a facile strategy to co-dope N and P atoms simultaneously into Ti3C2Tx (NP-Ti3C2Tx) MXene via an electrostatic self-assembly approach. The co-doped NP-Ti3C2Tx layers expose abundant active sites, providing more space for accommodating the formed Li2O2. Moreover, the N and P co-doping facilitates efficient electron transport in Ti3C2Tx MXene. The LOB with NP-Ti3C2TX catalyst delivers a high discharge capacity of 24,940 mAh/g at 1000 mA g-1. At a cut-off capacity of 1000 mAh/g, this battery runs continuously for 159, 276, 185, and 229 cycles at current densities of 1000, 2000, 3000, and 5000 mA g-1, respectively. Theoretical calculations unveil that N and P co-doping enables lower ηORR and ηOER of only 0.26 V and 0.13 V on Ti3C2Tx MXene, respectively. This work offers a feasible approach for constructing efficient MXene electrocatalysts for Li-air batteries.

3.
J Cell Mol Med ; 25(18): 8775-8788, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34337860

RESUMO

Artesunate is a widely used derivative of artemisinin for malaria. Recent researches have shown that artesunate has a significant anti-inflammatory effect on many diseases. However, its effect on acute kidney injury with a significant inflammatory response is not clear. In this study, we established a cisplatin-induced AKI mouse model and a co-culture system of BMDM and tubular epithelial cells (mTEC) to verify the renoprotective and anti-inflammatory effects of artesunate on AKI, and explored the underlying mechanism. We found that artesunate strongly down-regulated the serum creatinine and BUN levels in AKI mice, reduced the necroptosis of tubular cells and down-regulated the expression of the tubular injury molecule Tim-1. On the other hand, artesunate strongly inhibited the mRNA expression of inflammatory cytokines (IL-1ß, IL-6 and TNF-α), protein levels of inflammatory signals (iNOS and NF-κB) and necroptosis signals (RIPK1, RIPK3 and MLKL) in kidney of AKI mouse. Notably, the co-culture system proved that Mincle in macrophage can aggravate the inflammation and necroptosis of mTEC induced by LPS, and artesunate suppressed the expression of Mincle in macrophage of kidney in AKI mouse. Overexpression of Mincle in BMDM restored the damage and necroptosis inhibited by artesunate in mTEC, indicating Mincle in macrophage is the target of artesunate to protect tubule cells in AKI. Our findings demonstrated that artesunate can significantly improve renal function in AKI, which may be related to the inhibition of Mincle-mediated macrophage inflammation, thereby reducing the damage and necroptosis to tubular cells that provide new option for the treatment of AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Artesunato/farmacologia , Inflamação/tratamento farmacológico , Necroptose/efeitos dos fármacos , Animais , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células
4.
Clin Exp Pharmacol Physiol ; 47(1): 60-66, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454428

RESUMO

To examine the effect of chronic intermittent hypobaric hypoxia (CIHH) on heart rate variability (HRV), male adult Sprague Dawley rats were exposed to hypoxia (oxygen 11.1%) in a hypobaric chamber for 42 days, 6 hours each day, simulating an altitude of 5000 m. The body weight and blood pressure of rats were recorded once a week, electrocardiograms were analyzed continuously using biotelemetry, before, during and after CIHH treatment each day, and HRV was evaluated using spectrum analysis. No significant difference of body weight and blood pressure was found between CIHH and control rats. After 4 weeks of CIHH treatment, total power (TP) and very low-frequency component (VLF) were lower in CIHH rats than in control rats under hypobaric hypoxia condition. During CIHH treatment, low frequency (LF) was higher in 1 week and lower in 5-6 weeks in CIHH rats than control rats under hypobaric hypoxia, but not normoxic conditions. The high-frequency component (HF) was not changed during CIHH treatment, so LF/HF increased initially, and then recovered under the hypobaric hypoxia condition following 3 weeks of CIHH treatment. In addition, the HR was increased in CIHH rats after 4 weeks of CIHH treatment compared with control rats. Furthermore, HRV was altered significantly in control rats, but not in CIHH rats exposed to acute normobaric hypoxia. These data suggest that CIHH treatment modulates cardiac autonomic activity adaptively and inhibits the acute normobaric hypoxia-induced changes in HRV.


Assuntos
Frequência Cardíaca/fisiologia , Hipóxia/fisiopatologia , Altitude , Animais , Pressão Sanguínea/fisiologia , Peso Corporal/fisiologia , Eletrocardiografia/métodos , Masculino , Ratos , Ratos Sprague-Dawley
5.
Front Cell Neurosci ; 13: 415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616252

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated ion channels (HCN channels) are widely expressed in the central and peripheral nervous systems and organs, while their functions are not well elucidated especially in the sympathetic nerve. The present study aimed to investigate the roles of HCN channel isoforms in the differentiation of sympathetic neurons using PC12 cell as a model. PC12 cells derived from rat pheochromocytoma were cultured and induced by nerve growth factor (NGF) (25 ng/ml) to differentiate to sympathetic neuron-like cells. Sympathetic directional differentiation of PC12 cells were evaluated by expressions of growth-associated protein 43 (GAP-43) (a growth cone marker), tyrosine hydroxylase (TH) (a sympathetic neuron marker) and neurite outgrowth. Results show that the HCN channel isoforms (HCN1-4) were all expressed in PC12 cells; blocking HCN channels with ivabradine suppressed NGF-induced GAP-43 expression and neurite outgrowth; silencing the expression of HCN2 and HCN4 using silenced using small interfering RNAs (siRNA), rather than HCN1 and HCN3, restrained GAP-43 expression and neurite outgrowth, while overexpression of HCN2 and HCN4 channels with gene transfer promoted GAP-43 expression and neurite outgrowth. Patch clamp experiments show that PC12 cells exhibited resting potentials (RP) of about -65 to -70 mV, and also presented inward HCN channel currents and outward (K+) currents, but no inward voltage-gated Na+ current was induced; NGF did not significantly affect the RP but promoted the establishment of excitability as indicated by the increased ability to depolarize and repolarize in the evoked suspicious action potentials (AP). We conclude that HCN2 and HCN4 channel isoforms, but not HCN1 and HCN3, promote the differentiation of PC12 cells toward sympathetic neurons. NGF potentiates the establishment of excitability during PC12 cell differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA