Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1341332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746783

RESUMO

Introduction: The Crimean-Congo hemorrhagic fever virus (CCHFV), the most geographically widespread tick-borne virus, is endemic in Africa, Eastern Europe and Asia, with infection resulting in mortality in up to 30% of cases. Currently, there are no approved vaccines or effective therapies available for CCHF. The CCHFV should only be manipulated in the BSL-4 laboratory, which has severely hampered basic seroprevalence studies. Methods: In the present study, two antibody detection methods in the forms of an enzyme-linked immunosorbent assay (ELISA) and a surrogate virus neutralization test (sPVNT) were developed using a recombinant glycoprotein (rGP) and a vesicular stomatitis virus (VSV)-based virus bearing the CCHFV recombinant glycoprotein (rVSV/CCHFV) in a biosafety level 2 (BSL-2) laboratory, respectively. Results: The rGP-based ELISA and rVSV/CCHFV-based sVNT were established by using the anti-CCHFV pre-GC mAb 11E7, known as a broadly cross-reactive, potently neutralizing antibody, and their applications as diagnostic antigens were validated for the specific detection of CCHFV IgG and neutralizing antibodies in experimental animals. In two tests, mAb clone 11E7 (diluted at 1:163840 or 512) still displayed positive binding and neutralization, and the presence of antibodies (IgG and neutralizing) against the rGP and rVSV/CCHFV was also determined in the sera from the experimental animals. Both mAb 11E7 and animal sera showed a high reactivity to both antigens, indicating that bacterially expressed rGP and rVSV/CCHFV have good immunoreactivity. Apart from establishing two serological testing methods, their results also demonstrated an imperfect correlation between IgG and neutralizing antibodies. Discussion: Within this limited number of samples, the rGP and rVSV/CCHFV could be safe and convenient tools with significant potential for research on specific antibodies and serological samples.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Imunoglobulina G , Testes de Neutralização , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Testes de Neutralização/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/imunologia , Animais , Humanos , Glicoproteínas/imunologia , Testes Sorológicos/métodos , Proteínas Recombinantes/imunologia , Camundongos , Anticorpos Monoclonais/imunologia
2.
Viruses ; 14(8)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-36016285

RESUMO

The Crimean Congo Hemorrhagic Fever Virus (CCHFV) is a tick-borne bunyavirus of the Narovirus genus, which is the causative agent of Crimean Congo Hemorrhagic Fever (CCHF). CCHF is endemic in Africa, the Middle East, Eastern Europe and Asia, with a high case-fatality rate of up to 50% in humans. Currently, there are no approved vaccines or effective therapies available for CCHF. The GEM-PA is a safe, versatile and effective carrier system, which offers a cost-efficient, high-throughput platform for recovery and purification of subunit proteins for vaccines. In the present study, based on a GEM-PA surface display system, a GEM-PA based vaccine expressing three subunit vaccine candidates (G-GP, including G-eGN, G-eGC and G-NAb) of CCHFV was developed, displaying the ectodomains of the structural glycoproteins eGN, eGC and NAb, respectively. According to the immunological assays including indirect-ELISA, a micro-neutralization test of pseudo-virus and ELISpot, 5 µg GPBLP3 combined with Montanide ISA 201VG plus Poly (I:C) adjuvant (A-G-GP-5 µg) elicited GP-specific humoral and cellular immunity in BALB/c mice after three vaccinations via subcutaneous injection (s.c.). The consistent data between IgG subtype and cytokine detection, ELISpot and cytokine detection indicated balanced Th1 and Th2 responses, of which G-eGN vaccines could elicit a stronger T-cell response post-vaccination, respectively. Moreover, all three vaccine candidates elicited high TNF-α, IL-6, and IL-10 cytokine levels in the supernatant of stimulated splenocytes in vitro. However, the neutralizing antibody (nAb) was only detected in A-G-eGC and A-G-eGC vaccination groups with the highest neutralizing titer of 128, suggesting that G-eGC could elicit a stronger humoral immune response. In conclusion, the GEM-PA surface display system could provide an efficient and convenient purification method for CCHFV subunit antigens, and the G-GP subunit vaccine candidates will be promising against CCHFV infections with excellent immunogenicity.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Citocinas , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Humanos , Imunidade Humoral , Camundongos , Camundongos Knockout , Óleo Mineral , Vacinas de Subunidades Antigênicas
3.
BMC Vet Res ; 17(1): 172, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892731

RESUMO

BACKGROUND: Canine distemper virus (CDV) is an enveloped negative-strand RNA virus that exhibits a high mutation rate and continuously expands the range of hosts. Notably, CDV has infected giant panda with spill over from viral reservoirs in canines. Giant pandas (Ailuropoda melanoleuca), especially captive pandas, are known to be susceptible to natural infection with CDV. The high fatality rate of CDV poses a serious threat to the safety of the giant panda population. However, vaccines or drugs for canine distemper in giant pandas have not been developed to date. Therefore, a rapid test that can achieve accurate onsite detection of CDV is important to enable the timely implementation of control measures. In this study, we established a nucleic acid visualization assay for targeting the CDV N gene by using combines reverse transcription recombinase polymerase amplification with a closed vertical flow visualization strip (RT-RPA-VF). RESULTS: The RT-RPA-VF assay does not require sophisticated equipment, and it was determined to provide rapid detection at 35 °C for 30 min, while the limit of detection was 5 × 101 copies/µl RNA transcripts and 100.5 TCID50 ml- 1 viruses. The results showed that the assay was high specific to CDV and had no cross-reactivity with other viruses infecting the giant panda. Compared with RT-qPCR, RT-RPA-VF assay had a sensitivity of 100% and a specificity of 100% in 29 clinical samples. The coincidence rate between RT-RPA-VF and RT-qPCR was 100% (kappa = 1), indicating that the RT-RPA-VF assay possessed good diagnostic performance on clinical samples. CONCLUSIONS: The RT-RPA-VF provides a novel alternative for the simple, sensitive, and specific identification of CDV and showed great potential for point of care diagnostics for captive and wild giant panda.


Assuntos
Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/isolamento & purificação , Cinomose/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/veterinária , Ursidae/virologia , Animais , Cinomose/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Transcrição Reversa , Sensibilidade e Especificidade
4.
Viruses ; 11(12)2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835785

RESUMO

Sudan virus (SUDV) causes severe lethal hemorrhagic fever in humans and nonhuman primates. The most effective and economical way to protect against Sudan ebolavirus disease is prophylactic vaccination. However, there are no licensed vaccines to prevent SUDV infections. In this study, a bacterium-like particle (BLP)-based vaccine displaying the extracellular domain of the SUDV glycoprotein (eGP) was developed based on a gram-positive enhancer matrix-protein anchor (GEM-PA) surface display system. Expression of the recombinant GEM-displayed eGP (eGP-PA-GEM) was verified by Western blotting and immunofluorescence assays. The SUDV BLPs (SBLPs), which were mixed with Montanide ISA 201VG plus Poly (I:C) combined adjuvant, could induce high SUDV GP-specific IgG titers of up to 1:40,960 and robust virus-neutralizing antibody titers reached 1:460. The SBLP also elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. These data indicate that the SBLP subunit vaccine has the potential to be developed into a promising candidate vaccine against SUDV infections.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Imunidade Celular , Imunidade Humoral , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Baculoviridae/genética , Vetores Genéticos/genética , Doença pelo Vírus Ebola/prevenção & controle , Imunização , Camundongos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Virais/genética , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA