Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(23): 30239-30254, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38808540

RESUMO

We introduce thiazolo[5,4-d]thiazole (TT)-based derivatives featuring carbazole, phenothiazine, or triphenylamine donor units as hole-selective materials to enhance the performance of wide-bandgap perovskite solar cells (PSCs). The optoelectronic properties of the materials underwent thorough evaluation and were substantially fine-tuned through deliberate molecular design. Time-of-flight hole mobility TTs ranged from 4.33 × 10-5 to 1.63 × 10-3 cm2 V-1 s-1 (at an electric field of 1.6 × 105 V cm-1). Their ionization potentials ranged from -4.93 to -5.59 eV. Using density functional theory (DFT) calculations, it has been demonstrated that S0 → S1 transitions in TTs with carbazolyl or ditert-butyl-phenothiazinyl substituents are characterized by local excitation (LE). Mixed intramolecular charge transfer (ICT) and LE occurred for compounds containing ditert-butyl carbazolyl-, dimethoxy carbazolyl-, or alkoxy-substituted triphenylamino donor moieties. The selected derivatives of TT were used for the preparation of hole-selective layers (HSL) in PSC with the structure of glass/ITO/HSLs/Cs0.18FA0.82Pb(I0.8Br0.2)3/PEAI/PC61BM/BCP/Ag. The alkoxy-substituted triphenylamino containing TT (TTP-DPA) has been demonstrated to be an effective material for HSL. Its layer also functioned well as an interlayer, improving the surface of control HSL_2PACz (i.e., reducing the surface energy of 2PACz from 66.9 to 52.4 mN m-1), thus enabling precise control over perovskite growth energy level alignment and carrier extraction/transportation at the hole-selecting contact of PSCs. 2PACz/TTP-DPA-based devices showed an optimized performance of 19.1 and 37.0% under 1-sun and 3000 K LED (1000 lx) illuminations, respectively. These values represent improvements over those achieved by bare 2PACz-based devices, which attained efficiencies of 17.4 and 32.2%, respectively. These findings highlight the promising potential of TTs for the enhancement of the efficiencies of PSCs.

2.
Small ; : e2310939, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453670

RESUMO

Nickel oxide (NiOx ) is commonly used as a holetransporting material (HTM) in p-i-n perovskite solar cells. However, the weak chemical interaction between the NiOx and CH3 NH3 PbI3 (MAPbI3 ) interface results in poor crystallinity, ineffective hole extraction, and enhanced carrier recombination, which are the leading causes for the limited stability and power conversion efficiency (PCE). Herein, two HTMs, TRUX-D1 (N2 ,N7 ,N12 -tris(9,9-dimethyl-9H-fluoren-2-yl)-5,5,10,10,15,15-hexaheptyl-N2 ,N7 ,N12 -tris(4-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene-2,7,12-triamine) and TRUX-D2 (5,5,10,10,15,15-hexaheptyl-N2 ,N7 ,N12 -tris(4-methoxyphenyl)-N2 ,N7 ,N12 -tris(10-methyl-10H-phenothiazin-3-yl)-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene-2,7,12-triamine), are designed with a rigid planar C3 symmetry truxene core integrated with electron-donating amino groups at peripheral positions. The TRUX-D molecules are employed as effective interfacial layer (IFL) materials between the NiOx and MAPbI3 interface. The incorporation of truxene-based IFLs improves the quality of perovskite crystallinity, minimizes nonradiative recombination, and accelerates charge extraction which has been confirmed by various characterization techniques. As a result, the TRUX-D1 exhibits a maximum PCE of up to 20.8% with an impressive long-term stability. The unencapsulated device retains 98% of their initial performance following 210 days of aging in a glove box and 75.5% for the device after 80 days under ambient air condition with humidity over 40% at 25 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA