Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 9(97): 36914-36928, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30651925

RESUMO

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) binds to death receptors and induces apoptosis in various cancer cell lines while sparing normal cells. Recombinant TRAIL has shown good safety and efficacy profiles in preclinical cancer models. However, clinical success has been limited due to poor PK and development of resistance to death receptor-induced apoptosis. We have addressed these issues by creating a fusion protein of TRAIL and arginine deiminase (ADI). The fusion protein benefits from structural and functional synergies between its two components and has an extended half-life in vivo. ADI downregulates survivin, upregulates DR5 receptor and sensitizes cancer cells to TRAIL induced apoptosis. ADI-TRAIL fusion protein was efficacious in a number of cell lines and synergized with some standard of care drugs. In an HCT116 xenograft model ADI-TRAIL localized to the tumor and induced dose-dependent tumor regression, the fusion protein was superior to rhTRAIL administered at the same molar amounts.

3.
Blood ; 121(18): 3714-7, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23426948

RESUMO

AML1-ETO (RUNX1-ETO) fusion proteins are generated by the 8;21 translocation, commonly found in acute myeloid leukemia, which fuses the AML1 (RUNX1) and ETO (MTG8, RUNX1T1) genes. Previous studies have shown that AML1-ETO interferes with AML1 function but requires additional cooperating mutations to induce leukemia development. In mouse models, AML1-ETO forms lacking the C-terminus have been shown to have greatly enhanced leukemogenic potential. Here, we investigate the role of 2 AML1-ETO C-terminal-interacting proteins, N-CoR, a transcriptional corepressor, and SON, a splicing/transcription factor required for cell cycle progression, in AML1-ETO-induced leukemia development. AML1-ETO-W692A loses N-CoR binding at NHR4, displays attenuated transcriptional repression ability and decreased cellular dysregulation, and promotes leukemia in vivo. These results support the importance of the degree of dysregulation by AML1-ETO in cellular transformation and demonstrate that AML1-ETO-W692A can be used as an effective experimental model for determining which factors compromise the leukemogenic potential of AML1-ETO.


Assuntos
Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia/genética , Proteínas de Fusão Oncogênica/genética , Animais , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação para Baixo/genética , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Humanos , Células K562 , Leucemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Correpressor 1 de Receptor Nuclear/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Ligação Proteica/genética , Proteína 1 Parceira de Translocação de RUNX1
4.
Blood ; 121(15): 2882-90, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23372166

RESUMO

Advancements in human pluripotent stem cell (hPSC) research have potential to revolutionize therapeutic transplantation. It has been demonstrated that transcription factors may play key roles in regulating maintenance, expansion, and differentiation of hPSCs. In addition to its regulatory functions in hematopoiesis and blood-related disorders, the transcription factor RUNX1 is also required for the formation of definitive blood stem cells. In this study, we demonstrated that expression of endogenous RUNX1a, an isoform of RUNX1, parallels with lineage commitment and hematopoietic emergence from hPSCs, including both human embryonic stem cells and inducible pluripotent stem cells. In a defined hematopoietic differentiation system, ectopic expression of RUNX1a facilitates emergence of hematopoietic progenitor cells (HPCs) and positively regulates expression of mesoderm and hematopoietic differentiation-related factors, including Brachyury, KDR, SCL, GATA2, and PU.1. HPCs derived from RUNX1a hPSCs show enhanced expansion ability, and the ex vivo-expanded cells are capable of differentiating into multiple lineages. Expression of RUNX1a in embryoid bodies (EBs) promotes definitive hematopoiesis that generates erythrocytes with ß-globin production. Moreover, HPCs generated from RUNX1a EBs possess ≥9-week repopulation ability and show multilineage hematopoietic reconstitution in vivo. Together, our results suggest that RUNX1a facilitates the process of producing therapeutic HPCs from hPSCs.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Western Blotting , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Proliferação de Células , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/citologia , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Microscopia Confocal , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Transativadores/genética , Transativadores/metabolismo
5.
J Biol Chem ; 288(8): 5381-8, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23322776

RESUMO

SON is a DNA- and RNA-binding protein localized in nuclear speckles. Although its function in RNA splicing for effective cell cycle progression and genome stability was recently unveiled, other mechanisms of SON functions remain unexplored. Here, we report that SON regulates GATA-2, a key transcription factor involved in hematopoietic stem cell maintenance and differentiation. SON is highly expressed in undifferentiated hematopoietic stem/progenitor cells and leukemic blasts. SON knockdown leads to significant depletion of GATA-2 protein with marginal down-regulation of GATA-2 mRNA. We show that miR-27a is up-regulated upon SON knockdown and targets the 3'-UTR of GATA-2 mRNA in hematopoietic cells. Up-regulation of miR-27a was due to activation of the promoter of the miR-23a∼27a∼24-2 cluster, suggesting that SON suppresses this promoter to lower the microRNAs from this cluster. Our data revealed a previously unidentified role of SON in microRNA production via regulating the transcription process, thereby modulating GATA-2 at the protein level during hematopoietic differentiation.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Hematopoese , Humanos , Células K562 , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor , Modelos Biológicos , Regiões Promotoras Genéticas , Splicing de RNA , RNA Mensageiro/metabolismo , Células U937 , Regulação para Cima
6.
Blood ; 120(7): 1473-84, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22740448

RESUMO

Chromosome translocation 8q22;21q22 [t(8;21)] is commonly associated with acute myeloid leukemia (AML), and the resulting AML1-ETO fusion proteins are involved in the pathogenesis of AML. To identify novel molecular and therapeutic targets, we performed combined gene expression microarray and promoter occupancy (ChIP-chip) profiling using Lin(-)/Sca1(-)/cKit(+) cells, the major leukemia cell population, from an AML mouse model induced by AML1-ETO9a (AE9a). Approximately 30% of the identified common targets of microarray and ChIP-chip assays overlap with the human t(8;21)-gene expression molecular signature. CD45, a protein tyrosine phosphatase and a negative regulator of cytokine/growth factor receptor and JAK/STAT signaling, is among those targets. Its expression is substantially down-regulated in leukemia cells. Consequently, JAK/STAT signaling is enhanced. Re-expression of CD45 suppresses JAK/STAT activation, delays leukemia development, and promotes apoptosis of t(8;21)-positive cells. This study demonstrates the benefit of combining gene expression and promoter occupancy profiling assays to identify molecular and potential therapeutic targets in human cancers and describes a previously unappreciated signaling pathway involving t(8;21) fusion proteins, CD45, and JAK/STAT, which could be a potential novel target for treating t(8;21) AML.


Assuntos
Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 8/genética , DNA de Neoplasias/metabolismo , Perfilação da Expressão Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Translocação Genética , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Imunoprecipitação da Cromatina , Ativação Enzimática , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes/genética , Genes Neoplásicos/genética , Humanos , Janus Quinases/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética
7.
Blood ; 119(21): 4953-62, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22498736

RESUMO

Fusion protein AML1-ETO, resulting from t(8;21) translocation, is highly related to leukemia development. It has been reported that full-length AML1-ETO blocks AML1 function and requires additional mutagenic events to promote leukemia. We have previously shown that the expression of AE9a, a splice isoform of AML1-ETO, can rapidly cause leukemia in mice. To understand how AML1-ETO is involved in leukemia development, we took advantage of our AE9a leukemia model and sought to identify its interacting proteins from primary leukemic cells. Here, we report the discovery of a novel AE9a binding partner PRMT1 (protein arginine methyltransferase 1). PRMT1 not only interacts with but also weakly methylates arginine 142 of AE9a. Knockdown of PRMT1 affects expression of a specific group of AE9a-activated genes. We also show that AE9a recruits PRMT1 to promoters of AE9a-activated genes, resulting in enrichment of H4 arginine 3 methylation, H3 Lys9/14 acetylation, and transcription activation. More importantly, knockdown of PRMT1 suppresses the self-renewal capability of AE9a, suggesting a potential role of PRMT1 in regulating leukemia development.


Assuntos
Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/fisiologia , Ativação Transcricional , Animais , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Humanos , Células K562 , Camundongos , Análise em Microsséries , Proteínas de Fusão Oncogênica/fisiologia , Ligação Proteica/fisiologia , Proteína 1 Parceira de Translocação de RUNX1 , Células-Tronco/metabolismo , Ativação Transcricional/genética , Regulação para Cima/genética , Regulação para Cima/fisiologia
8.
Genes Dev ; 20(18): 2507-12, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16980580

RESUMO

The yeast SAS (Something About Silencing) complex and the histone variant H2A.Z have both previously been linked to an antisilencing function at the subtelomeric regions. SAS is an H4 Lys 16-specific histone acetyltransferase complex. Here we demonstrate that the H4 Lys 16 acetylation by SAS is required for efficient H2A.Z incorporation near telomeres. The presence of H4 Lys 16 acetylation and H2A.Z synergistically prevent the ectopic propagation of heterochromatin. Overall, our data suggest a novel antisilencing mechanism near telomeres.


Assuntos
Acetiltransferases/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Genes Fúngicos , Histona Acetiltransferases , Histonas/química , Lisina/química , Saccharomyces cerevisiae/genética , Telômero/metabolismo
9.
Genome Biol ; 7(5): 217, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16689998

RESUMO

Acetylation at histone H4 lysine 16 is involved in many cellular processes in organisms as diverse as yeast and humans. A recent biochemical study pinpoints this particular acetylation mark as a switch for changing chromatin from a repressive to a transcriptionally active state.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Ativação Transcricional , Acetilação , Animais , Cromatina/química , Cromatina/metabolismo , Drosophila/genética , Feminino , Genoma , Histonas/química , Humanos , Masculino , Modelos Genéticos , Saccharomyces cerevisiae/genética
10.
Cell ; 123(4): 581-92, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16286007

RESUMO

Yeast Rpd3 histone deacetylase plays an important role at actively transcribed genes. We characterized two distinct Rpd3 complexes, Rpd3L and Rpd3S, by MudPIT analysis. Both complexes shared a three subunit core and Rpd3L contains unique subunits consistent with being a promoter targeted corepressor. Rco1 and Eaf3 were subunits specific to Rpd3S. Mutants of RCO1 and EAF3 exhibited increased acetylation in the FLO8 and STE11 open reading frames (ORFs) and the appearance of aberrant transcripts initiating within the body of these ORFs. Mutants in the RNA polymerase II-associated SET2 histone methyltransferase also displayed these defects. Set2 functioned upstream of Rpd3S and the Eaf3 methyl-histone binding chromodomain was important for recruitment of Rpd3S and for deacetylation within the STE11 ORF. These data indicate that Pol II-associated Set2 methylates H3 providing a transcriptional memory which signals for deacetylation of ORFs by Rpd3S. This erases transcription elongation-associated acetylation to suppress intragenic transcription initiation.


Assuntos
Histona Desacetilases/metabolismo , Histonas/metabolismo , Metiltransferases/metabolismo , Fases de Leitura Aberta/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Acetilação , Acetiltransferases/análise , Acetiltransferases/genética , Acetiltransferases/metabolismo , Imunoprecipitação da Cromatina , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/análise , Histona Desacetilases/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Metilação , Metiltransferases/genética , Peso Molecular , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Subunidades Proteicas/análise , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Repressoras/análise , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/análise , Fatores de Transcrição/genética
11.
Biochim Biophys Acta ; 1731(2): 77-87; discussion 75-6, 2005 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16314178

RESUMO

Histone deacetylation by Saccharomyces cerevisiae Rpd3 represses genes regulated by the Ash1 and Ume6 DNA-binding proteins. Rpd3 exists in a small 0.6 MDa (Rpd3S) and large 1.2 MDa (Rpd3L) corepressor complex. In this report, we identify by mass spectrometry and MudPIT the subunits of the Rpd3L complex. These included Rpd3, Sds3, Pho23, Dep1, Rxt2, Sin3, Ash1, Ume1, Sap30, Cti6, Rxt3 and Ume6. Dep1 and Sds3, unique components of Rpd3L, were required for Rpd3L integrity and HDAC activity. Similar to RPD3, deletion of DEP1 enhanced telomeric silencing and derepressed INO1. Two sequence-specific repressors, Ash1 and Ume6, were stably associated with Rpd3L. While both of these proteins localized to the INO1 and HO promoters, the repression of these genes were dependent only on Ume6 and Ash1, respectively. Thus, the Rpd3L complex is directly recruited to specific promoters through multiple integral DNA-binding proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Histona Desacetilases/genética , Complexos Multienzimáticos/fisiologia , Regiões Promotoras Genéticas , Subunidades Proteicas/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
12.
J Biol Chem ; 280(12): 11987-94, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15659401

RESUMO

The yeast SAS2 (Something About Silencing 2) gene encodes a member of the MYST protein family of histone acetyltransferases (HATs) and is involved in transcriptional silencing at all silent loci (HML, HMR, telomeres, and rDNA) in Saccharomyces cerevisiae. Sas2 is the catalytic subunit of a yeast histone acetyltransferase complex termed SAS complex. The enzymatic activity of SAS complex on free histones has been reported, but nucleosomal HAT activity has not yet been documented. Here we show that the native yeast SAS complex is a small trimeric protein complex composed solely of Sas2, Sas4, and Sas5 with a molecular mass of about 125 kDa. It is capable of acetylating both free histones and nucleosomes, although the nucleosomal HAT activity of SAS complex is very weak when compared with that of NuA4, the other member of MYST HAT complex. We also demonstrate that the putative acetyl CoA binding motif in Sas2 is essential for both the in vivo silencing function and the enzymatic activity of SAS complex. Unlike NuA4, which acetylates all four available lysines at the N-terminal tail of histone H4, SAS complex exclusively acetylates lysine 16 of histone H4 in vitro and is required for the bulk of H4 lysine 16 acetylation in vivo. This specific lysine preference corresponds to the role of SAS complex in antagonizing the spreading of Sir proteins at silent loci in S. cerevisiae.


Assuntos
Acetiltransferases/química , Proteínas de Saccharomyces cerevisiae/química , Acetilcoenzima A/metabolismo , Acetilação , Acetiltransferases/fisiologia , Sítios de Ligação , Histona Acetiltransferases , Histonas/metabolismo , Nucleossomos/enzimologia , Subunidades Proteicas , Proteínas de Saccharomyces cerevisiae/fisiologia , Especificidade por Substrato
13.
J Biol Chem ; 278(19): 16887-92, 2003 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-12626510

RESUMO

The SAS2 gene is involved in transcriptional silencing in Saccharomyces cerevisiae. Based on its primary sequence, the Sas2 protein is predicted to be a member of the MYST family of histone acetyltransferases (HATs). Sas2 forms a complex with Sas4 and Sas5, which are required for its silencing function. Here we show that recombinant Sas2 has HAT activity that absolutely requires Sas4 and is stimulated by Sas5. The recombinant SAS complex acetylates H4 lysine 16 and H3 lysine 14. Furthermore, a purified SAS complex from yeast shows similar activity and specificity. In contrast to other MYST HATs, neither the recombinant nor the native SAS complex acetylated nucleosomal histones under conditions that were optimum for acetylating free histones. Finally, although the SAS subunits interact genetically and physically with Asf1, a histone deposition factor, association of H3 and H4 with Asf1 blocks their acetylation by the SAS complex, raising the possibility that the SAS HAT complex may acetylate free histones prior to their deposition onto DNA by Asf1 or CAF-I.


Assuntos
Acetiltransferases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetilação , Acetiltransferases/metabolismo , Ativação Enzimática , Inativação Gênica , Histona Acetiltransferases , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA