Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2160, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495503

RESUMO

Myostatin, a member of the transforming growth factor-ß superfamily, is an attractive target for muscle disease therapy because of its role as a negative regulator of muscle growth and strength. Here, we describe a novel antibody therapeutic approach that maximizes the potential of myostatin-targeted therapy. We generated an antibody, GYM329, that specifically binds the latent form of myostatin and inhibits its activation. Additionally, via "sweeping antibody technology", GYM329 reduces or "sweeps" myostatin in the muscle and plasma. Compared with conventional anti-myostatin agents, GYM329 and its surrogate antibody exhibit superior muscle strength-improvement effects in three different mouse disease models. We also demonstrate that the superior efficacy of GYM329 is due to its myostatin specificity and sweeping capability. Furthermore, we show that a GYM329 surrogate increases muscle mass in normal cynomolgus monkeys without any obvious toxicity. Our findings indicate the potential of GYM329 to improve muscle strength in patients with muscular disorders.


Assuntos
Anticorpos Monoclonais/farmacologia , Força Muscular/efeitos dos fármacos , Doenças Musculares/fisiopatologia , Miostatina/imunologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Modelos Animais de Doenças , Feminino , Fatores de Diferenciação de Crescimento/metabolismo , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Tamanho do Órgão , Transdução de Sinais
2.
Cancer Discov ; 11(1): 158-175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32847940

RESUMO

Agonistic antibodies targeting CD137 have been clinically unsuccessful due to systemic toxicity. Because conferring tumor selectivity through tumor-associated antigen limits its clinical use to cancers that highly express such antigens, we exploited extracellular adenosine triphosphate (exATP), which is a hallmark of the tumor microenvironment and highly elevated in solid tumors, as a broadly tumor-selective switch. We generated a novel anti-CD137 switch antibody, STA551, which exerts agonistic activity only in the presence of exATP. STA551 demonstrated potent and broad antitumor efficacy against all mouse and human tumors tested and a wide therapeutic window without systemic immune activation in mice. STA551 was well tolerated even at 150 mg/kg/week in cynomolgus monkeys. These results provide a strong rationale for the clinical testing of STA551 against a broad variety of cancers regardless of antigen expression, and for the further application of this novel platform to other targets in cancer therapy. SIGNIFICANCE: Reported CD137 agonists suffer from either systemic toxicity or limited efficacy against antigen-specific cancers. STA551, an antibody designed to agonize CD137 only in the presence of extracellular ATP, inhibited tumor growth in a broad variety of cancer models without any systemic toxicity or dependence on antigen expression.See related commentary by Keenan and Fong, p. 20.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Trifosfato de Adenosina , Neoplasias , Animais , Anticorpos Monoclonais/farmacologia , Antígenos de Neoplasias , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral
3.
PLoS One ; 13(12): e0209509, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30592762

RESUMO

Modulating the complement system is a promising strategy in drug discovery for disorders with uncontrolled complement activation. Although some of these disorders can be effectively treated with an antibody that inhibits complement C5, the high plasma concentration of C5 requires a huge dosage and frequent intravenous administration. Moreover, a conventional anti-C5 antibody can cause C5 to accumulate in plasma by reducing C5 clearance when C5 forms an immune complex (IC) with the antibody, which can be salvaged from endosomal vesicles by neonatal Fc receptor (FcRn)-mediated recycling. In order to neutralize the increased C5, an even higher dosage of the antibody would be required. This antigen accumulation can be suppressed by giving the antibody a pH-dependent C5-binding property so that C5 is released from the antibody in the acidic endosome and then trafficked to the lysosome for degradation, while the C5-free antibody returns back to plasma. We recently demonstrated that a pH-dependent C5-binding antibody, SKY59, exhibited long-lasting neutralization of C5 in cynomolgus monkeys, showing potential for subcutaneous delivery or less frequent administration. Here we report the details of the antibody engineering involved in generating SKY59, from humanizing a rabbit antibody to improving the C5-binding property. Moreover, because the pH-dependent C5-binding antibodies that we first generated still accumulated C5, we hypothesized that the surface charges of the ICs partially contributed to a slow uptake rate of the C5-antibody ICs. This idea motivated us to engineer the surface charges of the antibody. Our surface-charge engineered antibody consequently exhibited a high capacity to sweep C5 and suppressed the C5 accumulation in vivo by accelerating the cycle of sweeping: uptake of ICs into cells, release of C5 from the antibody in endosomes, and salvage of the antigen-free antibody. Thus, our engineered anti-C5 antibody, SKY59, is expected to provide significant benefits for patients with complement-mediated disorders.


Assuntos
Anticorpos Monoclonais/genética , Ativação do Complemento/efeitos dos fármacos , Complemento C5/antagonistas & inibidores , Engenharia de Proteínas/métodos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Afinidade de Anticorpos , Ativação do Complemento/imunologia , Complemento C5/imunologia , Complemento C5/isolamento & purificação , Simulação por Computador , Descoberta de Drogas/métodos , Endossomos/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Concentração de Íons de Hidrogênio , Doenças do Sistema Imunitário/tratamento farmacológico , Doenças do Sistema Imunitário/imunologia , Macaca fascicularis , Camundongos , Camundongos Transgênicos , Mutagênese , Receptores Fc/genética , Receptores Fc/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Fatores de Tempo
4.
Sci Rep ; 7(1): 1080, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28439081

RESUMO

Dysregulation of the complement system is linked to the pathogenesis of a variety of hematological disorders. Eculizumab, an anti-complement C5 monoclonal antibody, is the current standard of care for paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). However, because of high levels of C5 in plasma, eculizumab has to be administered biweekly by intravenous infusion. By applying recycling technology through pH-dependent binding to C5, we generated a novel humanized antibody against C5, SKY59, which has long-lasting neutralization of C5. In cynomolgus monkeys, SKY59 suppressed C5 function and complement activity for a significantly longer duration compared to a conventional antibody. Furthermore, epitope mapping by X-ray crystal structure analysis showed that a histidine cluster located on C5 is crucial for the pH-dependent interaction with SKY59. This indicates that the recycling effect of SKY59 is driven by a novel mechanism of interaction with its antigen and is distinct from other known pH-dependent antibodies. Finally, SKY59 showed neutralizing effect on C5 variant p.Arg885His, while eculizumab does not inhibit complement activity in patients carrying this mutation. Collectively, these results suggest that SKY59 is a promising new anti-C5 agent for patients with PNH and other complement-mediated disorders.


Assuntos
Anticorpos Neutralizantes/imunologia , Complemento C5/antagonistas & inibidores , Complemento C5/imunologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/química , Complemento C5/química , Cristalografia por Raios X , Hemoglobinúria Paroxística/tratamento farmacológico , Humanos , Macaca fascicularis , Ligação Proteica , Conformação Proteica
5.
MAbs ; 5(2): 229-36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23406628

RESUMO

Fc engineering is a promising approach to enhance the antitumor efficacy of monoclonal antibodies (mAbs) through antibody-dependent cell-mediated cytotoxicity (ADCC). Glyco- and protein-Fc engineering have been employed to enhance FcγR binding and ADCC activity of mAbs; the drawbacks of previous approaches lie in their binding affinity to both FcγRIIIa allotypes, the ratio of activating FcγR binding to inhibitory FcγR binding (A/I ratio) or the melting temperature (T(M)) of the C(H)2 domain. To date, no engineered Fc variant has been reported that satisfies all these points. Herein, we present a novel Fc engineering approach that introduces different substitutions in each Fc domain asymmetrically, conferring optimal binding affinity to FcγR and specificity to the activating FcγR without impairing the stability. We successfully designed an asymmetric Fc variant with the highest binding affinity for both FcγRIIIa allotypes and the highest A/I ratio compared with previously reported symmetrically engineered Fc variants, and superior or at least comparable in vitro ADCC activity compared with afucosylated Fc variants. In addition, the asymmetric Fc engineering approach offered higher stability by minimizing the use of substitutions that reduce the T(M) of the C(H)2 domain compared with the symmetric approach. These results demonstrate that the asymmetric Fc engineering platform provides best-in-class effector function for therapeutic antibodies against tumor antigens.


Assuntos
Anticorpos Monoclonais/genética , Afinidade de Anticorpos , Especificidade de Anticorpos , Fragmentos Fc das Imunoglobulinas/genética , Engenharia de Proteínas/métodos , Receptores de IgG/metabolismo , Substituição de Aminoácidos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Linhagem Celular , Fucose/metabolismo , Variação Genética , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA