Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Invasions ; 25(5): 1403-1419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713465

RESUMO

Rose-ringed parakeets (Psittacula krameri) are one of the most widespread invasive avian species worldwide. This species was introduced to the island of Kaua'i, Hawai'i, USA, in the 1960s. The rapidly increasing population has caused substantial economic losses in the agricultural and tourism industries. We evaluated the efficacy of a roost culling program conducted by an independent contractor from March 2020 to March 2021. We estimated island-wide minimum abundance was 10,512 parakeets in January 2020 and 7,372 in April 2021. Over 30 nights of culling at four roost sites, approximately 6,030 parakeets were removed via air rifles with 4,415 (73%) confirmed via carcasses retrieval. An estimated average of 45 parakeets were removed per hour of shooter effort. The proportion of adult females removed in 2020 was 1.9 × greater when culled outside of the estimated nesting season. Of the four roosts where culling occurred, the parakeets fully abandoned three and partially abandoned one site. Of the three fully abandoned roosts, an estimated average of 29.6% of birds were culled prior to roost abandonment. The roost culling effort was conducted during the COVID-19 pandemic, when tourist numbers and foot traffic were greatly reduced. It is unknown how public perception of roost culling in public areas may impact future efforts. Findings suggest roost culling can be utilized for management of nonnative rose-ringed parakeet populations when roost size is small enough and staff size large enough to cull entire roosts in no greater than two consecutive nights (e.g., if two shooters are available for three hours per night, roost culling should only be attempted on a roost with ≤ 540 rose-ringed parakeets). Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-022-02984-3.

2.
Ecol Appl ; 32(2): e2522, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34918411

RESUMO

Disruption of plant-pollinator interactions by invasive predators is poorly understood but may pose a critical threat for native ecosystems. In a multiyear field experiment in Hawai'i, we suppressed abundances of globally invasive predators and then observed insect visitation to flowers of six native plant species. Three plant species are federally endangered (Haplostachys haplostachya, Silene lanceolata, Tetramolopium arenarium) and three are common throughout their range (Bidens menziesii, Dubautia linearis, Sida fallax). Insect visitors were primarily generalist pollinators, including taxa that occur worldwide such as solitary bees (e.g., Lasioglossum impavidum), social bees (e.g., Apis mellifera), and syrphid flies (e.g., Allograpta exotica). We found that suppressing invasive rats (Rattus rattus), mice (Mus musculus), ants (Linepithema humile, Tapinoma melanocephalum), and yellowjacket wasps (Vespula pensylvanica) had positive effects on pollinator visitation to plants in 16 of 19 significant predator-pollinator-plant interactions. We found only positive effects of suppressing rats and ants, and both positive and negative effects of suppressing mice and yellowjacket wasps, on the frequency of interactions between pollinators and plants. Model results predicted that predator eradication could increase the frequency of insect visitation to flowering species, in some cases by more than 90%. Previous results from the system showed that these flowering species produced significantly more seed when flowers were allowed to outcross than when flowers were bagged to exclude pollinators, indicating limited autogamy. Our findings highlight the potential benefits of suppression or eradication of invasive rodents, ants, and yellowjackets to reverse pollination disruption, particularly in locations with high numbers of at-risk plant species or already imperiled pollinator populations.


Assuntos
Ecossistema , Espécies Introduzidas , Polinização , Animais , Formigas , Abelhas , Flores , Camundongos , Ratos , Vespas
3.
Evol Appl ; 14(5): 1421-1435, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025776

RESUMO

Introduced rodent populations pose significant threats worldwide, with particularly severe impacts on islands. Advancements in genome editing have motivated interest in synthetic gene drives that could potentially provide efficient and localized suppression of invasive rodent populations. Application of such technologies will require rigorous population genomic surveys to evaluate population connectivity, taxonomic identification, and to inform design of gene drive localization mechanisms. One proposed approach leverages the predicted shifts in genetic variation that accompany island colonization, wherein founder effects, genetic drift, and island-specific selection are expected to result in locally fixed alleles (LFA) that are variable in neighboring nontarget populations. Engineering of guide RNAs that target LFA may thus yield gene drives that spread within invasive island populations, but would have limited impacts on nontarget populations in the event of an escape. Here we used pooled whole-genome sequencing of invasive mouse (Mus musculus) populations on four islands along with paired putative source populations to test genetic predictions of island colonization and characterize locally fixed Cas9 genomic targets. Patterns of variation across the genome reflected marked reductions in allelic diversity in island populations and moderate to high degrees of differentiation from nearby source populations despite relatively recent colonization. Locally fixed Cas9 sites in female fertility genes were observed in all island populations, including a small number with multiplexing potential. In practice, rigorous sampling of presumptive LFA will be essential to fully assess risk of resistance alleles. These results should serve to guide development of improved, spatially limited gene drive design in future applications.

4.
Sci Rep ; 9(1): 15821, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676762

RESUMO

Invasive species pose a major threat to biodiversity on islands. While successes have been achieved using traditional removal methods, such as toxicants aimed at rodents, these approaches have limitations and various off-target effects on island ecosystems. Gene drive technologies designed to eliminate a population provide an alternative approach, but the potential for drive-bearing individuals to escape from the target release area and impact populations elsewhere is a major concern. Here we propose the "Locally Fixed Alleles" approach as a novel means for localizing elimination by a drive to an island population that exhibits significant genetic isolation from neighboring populations. Our approach is based on the assumption that in small island populations of rodents, genetic drift will lead to alleles at multiple genomic loci becoming fixed. In contrast, multiple alleles are likely to be maintained in larger populations on mainlands. Utilizing the high degree of genetic specificity achievable using homing drives, for example based on the CRISPR/Cas9 system, our approach aims at employing one or more locally fixed alleles as the target for a gene drive on a particular island. Using mathematical modeling, we explore the feasibility of this approach and the degree of localization that can be achieved. We show that across a wide range of parameter values, escape of the drive to a neighboring population in which the target allele is not fixed will at most lead to modest transient suppression of the non-target population. While the main focus of this paper is on elimination of a rodent pest from an island, we also discuss the utility of the locally fixed allele approach for the goals of population suppression or population replacement. Our analysis also provides a threshold condition for the ability of a gene drive to invade a partially resistant population.


Assuntos
Alelos , Biodiversidade , Animais , Ilhas
5.
Am J Bot ; 106(2): 313-324, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30768870

RESUMO

PREMISE OF THE STUDY: Over one-third of the native flowering plant species in the Hawaiian Islands are listed as federally threatened or endangered. Lack of sufficient pollination could contribute to reductions in populations, reproduction, and genetic diversity among these species but has been little studied. METHODS: We used systematic observations and manual flower treatments to quantify flower visitation and outcrossing dependency of eight native (including four endangered) plant species in a dryland ecosystem in Hawaii: Argemone glauca, Bidens menziesii, Dubautia linearis, Haplostachys haplostachya, Sida fallax, Silene lanceolata, Stenogyne angustifolia, and Tetramolopium arenarium. KEY RESULTS: During 576.36 h of flower observations, only insects visited the flowers. Out of all recorded flower visits, 85% were performed by non-native species, particularly the honeybee (Apis mellifera) and flies in the family Syrphidae. Some plant species received little visitation (e.g., S. angustifolia received one visit in 120 h of observation), whereas others were visited by a wide diversity of insects. The endangered plant species were visited by fewer visitor taxa than were the common native plant species. For six of the focal plant species, bagging of flowers to exclude pollinators resulted in significant reductions in seed set. CONCLUSIONS: The flower visitor community in this system, although heavily dominated by non-native insects, appears to be facilitating pollination for multiple plant species. Non-native insects may thus be sustaining biotic interactions otherwise threatened with disruption in this island ecosystem. This may be particularly important for the studied endangered plant species, which exhibit fewer partners than the more common plant species.


Assuntos
Insetos , Espécies Introduzidas , Magnoliopsida , Polinização , Animais , Havaí
6.
J Environ Manage ; 219: 115-124, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29738931

RESUMO

After its inadvertent introduction to Guam, the brown tree snake (Boiga irregularis, BTS) extirpated most of the island's native terrestrial vertebrates, presented a health hazard to small children, and had considerable economic ramifications. Management of BTS is aimed at a number of objectives, the foremost of which has been to deter its dispersal from Guam to other locations. Further objectives include reclaiming areas on Guam as snake-free for reintroduction of native wildlife, to protect small sensitive sites on Guam from BTS intrusion (e.g, power stations, bird nesting sites), to contain and capture stowaway BTS incoming to vulnerable destinations, and to control incipient populations in other areas beyond their native range. A number of control tools have been developed, and the efficacy of each control method depends on the situation to which it is applied. Integration of control methods provides the most efficacious results for all objectives. Here, we outline the different objectives for managing BTS, and the tools and methods available for BTS management. We complete the picture by describing which tools and methods are best suited to accomplish each management objective.


Assuntos
Animais Selvagens , Espécies Introduzidas , Controle de Pragas , Serpentes , Animais , Criança , Guam , Humanos , Ilhas , Árvores
7.
Conserv Biol ; 31(4): 761-771, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27982493

RESUMO

Invasive rats are one of the world's most successful animal groups that cause native species extinctions and ecosystem change, particularly on islands. On large islands, rat eradication is often impossible and population control, defined as the local limitation of rat abundance, is now routinely performed on many of the world's islands as an alternative management tool. However, a synthesis of the motivations, techniques, costs, and outcomes of such rat-control projects is lacking. We reviewed the literature, searched relevant websites, and conducted a survey via a questionnaire to synthesize the available information on rat-control projects in island natural areas worldwide to improve rat management and native species conservation. Data were collected from 136 projects conducted over the last 40 years; most were located in Australasia (46%) and the tropical Pacific (25%) in forest ecosystems (65%) and coastal strands (22%). Most of the projects targeted Rattus rattus and most (82%) were aimed at protecting birds and endangered ecosystems. Poisoning (35%) and a combination of trapping and poisoning (42%) were the most common methods. Poisoning allows for treatment of larger areas, and poison projects generally last longer than trapping projects. Second-generation anticoagulants (mainly brodifacoum and bromadiolone) were used most often. The median annual cost for rat-control projects was US$17,262 or US$227/ha. Median project duration was 4 years. For 58% of the projects, rat population reduction was reported, and 51% of projects showed evidence of positive effects on biodiversity. Our data were from few countries, revealing the need to expand rat-control distribution especially in some biodiversity hotspots. Improvement in control methods is needed as is regular monitoring to assess short- and long-term effectiveness of rat-control.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espécies Introduzidas , Ilhas , Ratos , Animais , Australásia , Ecossistema
8.
AoB Plants ; 72015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019231

RESUMO

Mammalian herbivores can limit plant recruitment and affect forest composition. Loulu palms (Pritchardia spp.) once dominated many lowland ecosystems in Hawai'i, and non-native rats (Rattus spp.), ungulates (e.g. pigs Sus scrofa, goats Capra hircus) and humans have been proposed as major causes of their decline. In lowland wet forest, we experimentally determined the vulnerability of seeds and seedlings of two species of Pritchardia, P. maideniana and P. hillebrandii, by measuring their removal by introduced vertebrates; we also used motion-sensing cameras to identify the animals responsible for Pritchardia removal. We assessed potential seed dispersal of P. maideniana by spool-and-line tracking, and conducted captive-feeding trials with R. rattus and seeds and seedlings of both Pritchardia species. Seed removal from the forest floor occurred rapidly for both species: >50 % of Pritchardia seeds were removed from the vertebrate-accessible stations within 6 days and >80 % were removed within 22 days. Although rats and pigs were both common to the study area, motion-sensing cameras detected only rats (probably R. rattus) removing Pritchardia seeds from the forest floor. Captive-feeding trials and spool-and-line tracking revealed that vertebrate seed dispersal is rare; rats moved seeds up to 8 m upon collection and subsequently destroyed them (100 % mortality in 24-48 h in captivity). Surprisingly, seedlings did not suffer vertebrate damage in field trials, and although rats damaged seedlings in captivity, they rarely consumed them. Our findings are consistent with the hypothesis generated from palaeoecological studies, indicating that introduced rats may have assisted in the demise of native insular palm forests. These findings also imply that the seed stage of species in this Pacific genus is particularly vulnerable to rats; therefore, future conservation efforts involving Pritchardia should prioritize the reduction of rat predation on the plant recruitment stages preceding seedling establishment.

9.
PLoS One ; 10(4): e0123064, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25910229

RESUMO

The nematode Angiostrongylus cantonensis is a rat lungworm, a zoonotic pathogen that causes human eosinophilic meningitis and ocular angiostrongyliasis characteristic of rat lungworm (RLW) disease. Definitive diagnosis is made by finding and identifying A. cantonensis larvae in the cerebral spinal fluid or by using a custom immunological or molecular test. This study was conducted to determine if genomic DNA from A. cantonensis is detectable by qPCR in the blood or tissues of experimentally infected rats. F1 offspring from wild rats were subjected to experimental infection with RLW larvae isolated from slugs, then blood or tissue samples were collected over multiple time points. Blood samples were collected from 21 rats throughout the course of two trials (15 rats in Trial I, and 6 rats in Trial II). In addition to a control group, each trial had two treatment groups: the rats in the low dose (LD) group were infected by approximately 10 larvae and the rats in the high dose (HD) group were infected with approximately 50 larvae. In Trial I, parasite DNA was detected in cardiac bleed samples from five of five LD rats and five of five HD rats at six weeks post-infection (PI), and three of five LD rats and five of five HD rats from tail tissue. In Trial II, parasite DNA was detected in peripheral blood samples from one of two HD rats at 53 minutes PI, one of two LD rats at 1.5 hours PI, one of two HD rats at 18 hours PI, one of two LD rats at five weeks PI and two of two at six weeks PI, and two of two HD rats at weeks five and six PI. These data demonstrate that parasite DNA can be detected in peripheral blood at various time points throughout RLW infection in rats.


Assuntos
Angiostrongylus cantonensis/genética , Doenças dos Animais/parasitologia , Parasitemia , Infecções por Strongylida/veterinária , Animais , Feminino , Coração/parasitologia , Pulmão/parasitologia , Masculino , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Baço/parasitologia
10.
J Vet Diagn Invest ; 27(2): 241-4, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25691507

RESUMO

Rats (Rattus spp.) are among the most damaging invasive species worldwide. The accidental introduction of rats has caused significant detriment to native flora and fauna, crops, structures, and human livelihoods. Rats are vectors of disease and carriers of various zoonotic parasites. Capillaria hepatica (syn. Callodium hepaticum) is a parasitic nematode found primarily in rodents but is known to infect over 140 mammal species, including human beings and several species of domestic animals. In this case study, the presence of C. hepatica infection in black rats on Diego Garcia, British Indian Ocean Territory, is reported. Liver samples from 20 black rats (Rattus rattus) were collected during a concurrent population density estimation study. Histology revealed 15 (75%) of the rats sampled had a current or previous infection with C. hepatica. In addition, a larval cestode compatible in size and shape with Cysticercus fasciolaris, the larval stage of Taenia taeniaeformis of cats, was found in 3 (15%) of the rats sampled. The high prevalence of C. hepatica infection in rats on Diego Garcia has implications for human health given the high population density of rats found on the island.


Assuntos
Capillaria/isolamento & purificação , Reservatórios de Doenças , Infecções por Enoplida/veterinária , Doenças dos Roedores/epidemiologia , África Oriental/epidemiologia , Animais , Animais Selvagens , Infecções por Enoplida/epidemiologia , Infecções por Enoplida/parasitologia , Infecções por Enoplida/transmissão , Feminino , Fígado/parasitologia , Masculino , Prevalência , Ratos , Doenças dos Roedores/parasitologia , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA