Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 152: 106454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354567

RESUMO

BACKGROUND: Topography and tomography are valuable techniques for measuring the corneal shape, but they cannot directly assess its internal mechanical stresses. And nonuniform corneal stress plays a crucial biomechanical role in the progression of diseases and postoperative changes. Given the cornea's inherent transparency, analyzing corneal stresses using the photoelasticity method is highly advantageous. However, quantification of photoelasticity faces challenges in obtaining the stress-optic coefficient due to wrinkles caused by the non-spherical geometry during tensional experiments. OBJECTIVE: In this study, we propose an innovative experimental setup aimed at generating a gradient field of simple shear stress and achieving surface flatness during corneal stretching experiments, enabling the acquisition of the stress-optic coefficient through comparison with numerical results. METHODS: Our designed setup applies fluid pressure and force couples on the cornea. The internal fluid pressure maintains the corneal shape, preventing wrinkles, while the force couples create a stress field leading to isochromatic fringes. RESULTS: We successfully measured the stress-optic coefficients of the porcine anisotropic cornea in ex-vivo as 1.87 × 10-9 (horizontal) and 1.97 × 10-9 (vertical) (m2/N). Each isochromatic fringe order represents a shear stress range of 6.05 × 104 Pa under a low tension. CONCLUSIONS: This study establishes a significant connection between corneal photoelastic patterns and the quantification of corneal stress by enabling direct measurement through advanced photoelastic visualization technology for clinical applications.


Assuntos
Córnea , Animais , Suínos , Humanos , Estresse Mecânico , Anisotropia , Período Pós-Operatório
2.
Comput Biol Med ; 168: 107804, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070205

RESUMO

BACKGROUND: A non-contact tonometer is used to measure intraocular pressure, and studies have primarily relied on apex displacements to assess corneal properties. However, previous studies have overlooked the asymmetric characteristics of lateral corneal perturbations, leading to a gap in understanding of the lateral mechanical properties and its application. METHOD: To investigate these lateral perturbations, we designed an experiment to sequentially record the corneal profiles when two consecutive air-puffs were applied at the center of the same cornea within a short period. Moreover, we used modal decomposition to decompose anterior surface profiles into symmetric and antisymmetric modes to comprehensively analyze the asymmetric characteristics. To extract mechanical properties, we utilized high-pass frequency analysis (>250 Hz) to filter out noise and errors. RESULTS: Symmetric modes between the two consecutive air-puffs exhibited major similarities during vibration; however, antisymmetric modes exhibited minor differences in lateral perturbations of asymmetric vibration. The antisymmetric modes might be related to air-puff misalignment and mechanical properties. Through applying frequency analysis, the mechanical properties could be proven at high frequencies and misalignment shown at low frequencies. Furthermore, we compared the corneal vibration profiles of 259 healthy participants and 50 patients with keratoconus. Their properties showed that the antisymmetric modes of the keratoconus group exhibited a completely opposite direction of deformation compared to that in the healthy group. CONCLUSIONS: Our proposed algorithm not only extracts antisymmetric characteristics but also offers valuable insights into decompose misalignment and mechanical properties of healthy and keratoconus corneas, presenting a new perspective for corneal biomechanics.


Assuntos
Ceratocone , Humanos , Córnea , Pressão Intraocular , Tonometria Ocular , Fenômenos Biomecânicos
3.
Micromachines (Basel) ; 13(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35056298

RESUMO

Energy harvesters are devices that accumulate ambient vibrational energy from the environment, and for the time being, variable capacitance is the most widely used mechanism. Various designs were proposed to increase the power of such devices, and in particular, the interdigitated electrode (IDE) pattern is the mainstream. Nevertheless, most IDE designs focus merely on the parallel-type vibrations of electrodes. In this study, the performance of a novel harvester, which combined circular membrane and interdigitated ring electrodes (IRE), was investigated. This design allows the device to collect energy from the rotational structure motions of electrodes through the vibrating membrane. Besides, the circular structure provides a dense capacitive arrangement that is higher than that of the arrangement obtained using regular rectangular chips. The IRE diagram is composed of many capacitive rings, each of which harvests vibrated energy simultaneously. Three gaps (1, 10, and 100 µm) of the ring are investigated for the first four vibrational modes of the membrane to understand the effect of energy output. It is found that the energy outputs are approximately the same for the three gaps; however, rings with a wider gap are easier to manufacture in MEMS.

4.
Polymers (Basel) ; 13(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34641122

RESUMO

To improve bovine corneal endothelial cell (BCEC) migration, enhance cell energy, and facilitate symmetric cell distribution in corneal surfaces, an electromagnet device was fabricated. Twenty nanometer superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with fourth-generation dendrimer macromolecules were synthesized, and their size and structure were evaluated using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The results confirmed the configuration of the dendrimer on the SPION surfaces. In vitro biocompatibility was assessed using the 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide assay. No significant toxicity was noted on BCECs within 24 h of incubation. In the cell migration assay, cells treated with dendrimer-coated SPIONs exhibited a relatively high wound healing rate under sample addition (1 µg/mL) under a magnetic field. Real-time PCR on BCECs treated with dendrimer-coated SPIONs revealed upregulation of specific genes, including AT1P1 and NCAM1, for BCECs-dendrimer-coated SPIONs under a magnetic field. The three-dimensional dispersion of BCECs containing dendrimer-coated SPIONs under a magnetic field was evaluated using COMSOL Multiphysics software. The results revealed the BCECs-SPION vortex pattern layers in the corneal surface corresponded to the electromagnet's displacement from the ocular surface. Magnetic resonance imaging (MRI) indicated that dendrimer-coated SPIONs can be used as a T2 contrast agent.

5.
Sensors (Basel) ; 17(10)2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28937607

RESUMO

Tapping mode (TM) atomic force microscopy (AFM) in a liquid environment is widely used to measure the contours of biological specimens. The TM triggers the AFM probe approximately at the resonant frequencies and controls the tip such that it periodically touches the specimen along the scanning path. The AFM probe and its tip produce a hydrodynamic pressure on the probe itself and press the specimen. The tip to specimen size ratio is known to affect the measurement accuracy of AFM, however, few studies have focused on the hydrodynamic pressure caused by the effects of specimen size. Such pressure affects the contour distortion of the biological specimen. In this study, a semi-analytical method is employed for a semicircular specimen to analyze the vorticity and pressure distributions for specimens of various sizes and at various tip locations. Changes in pressure distribution, fluid spin motion, and specimen deformation are identified as the tip approaches the specimen. The results indicate the following: the specimen surface experiences the highest pressure when the specimen diameter equals the tip width; the vorticity between tip and specimen is complex when the tip is close to the specimen center line; and the specimen inflates when the tip is aligned with the specimen center line.

6.
Sensors (Basel) ; 15(8): 18381-401, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26225979

RESUMO

Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.


Assuntos
Microscopia de Força Atômica/instrumentação , Reologia , Hidrodinâmica , Análise Numérica Assistida por Computador , Pressão , Propriedades de Superfície , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA