Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 7: 580, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005645

RESUMO

The veterinary pharmacopeia available to treat pain and inflammation is limited in number, target of action and efficacy. Inhibitors of soluble epoxide hydrolase (sEH) are a new class of anti-inflammatory, pro-resolving and analgesic drugs being tested in humans that have demonstrated efficacy in laboratory animals. They block the hydrolysis, and thus, increase endogenous concentrations of analgesic and anti-inflammatory signaling molecules called epoxy-fatty acids. Here, we screened a library of 2,300 inhibitors of the sEH human against partially purified feline, canine and equine hepatic sEH to identify inhibitors that are broadly potent among species. Six very potent sEH inhibitors (IC50 < 1 nM for each enzyme tested) were identified. Their microsomal stability was then measured in hepatic extracts from cat, dog and horse, as well as their solubility in solvents suitable for the formulation of drugs. The trans-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy}-benzoic acid (t-TUCB, 1,728) appears to be the best compromise between stability and potency across species. Thus, it was selected for further testing in veterinary clinical trials of pain and inflammation in animals.

2.
J Am Chem Soc ; 140(42): 13764-13774, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30351140

RESUMO

Copper deficiency is implicated in a variety of genetic, neurological, cardiovascular, and metabolic diseases. Current approaches for addressing copper deficiency rely on generic copper supplementation, which can potentially lead to detrimental off-target metal accumulation in unwanted tissues and subsequently trigger oxidative stress and damage cascades. Here we present a new modular platform for delivering metal ions in a tissue-specific manner and demonstrate liver-targeted copper supplementation as a proof of concept of this strategy. Specifically, we designed and synthesized an N-acetylgalactosamine-functionalized ionophore, Gal-Cu(gtsm), to serve as a copper-carrying "Trojan Horse" that targets liver-localized asialoglycoprotein receptors (ASGPRs) and releases copper only after being taken up by cells, where the reducing intracellular environment triggers copper release from the ionophore. We utilized a combination of bioluminescence imaging and inductively coupled plasma mass spectrometry assays to establish ASGPR-dependent copper accumulation with this reagent in both liver cell culture and mouse models with minimal toxicity. The modular nature of our synthetic approach presages that this platform can be expanded to deliver a broader range of metals to specific cells, tissues, and organs in a more directed manner to treat metal deficiency in disease.


Assuntos
Acetilgalactosamina/metabolismo , Cobre/administração & dosagem , Cobre/farmacocinética , Suplementos Nutricionais , Portadores de Fármacos/metabolismo , Ionóforos/metabolismo , Fígado/metabolismo , Acetilgalactosamina/síntese química , Acetilgalactosamina/química , Animais , Receptor de Asialoglicoproteína/metabolismo , Suplementos Nutricionais/análise , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ionóforos/síntese química , Ionóforos/química , Camundongos
3.
JCI Insight ; 3(5)2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29515023

RESUMO

Excess lipid accumulation is an early signature of nonalcoholic fatty liver disease (NAFLD). Although liver receptor homolog 1 (LRH-1) (encoded by NR5A2) is suppressed in human NAFLD, evidence linking this phospholipid-bound nuclear receptor to hepatic lipid metabolism is lacking. Here, we report an essential role for LRH-1 in hepatic lipid storage and phospholipid composition based on an acute hepatic KO of LRH-1 in adult mice (LRH-1AAV8-Cre mice). Indeed, LRH-1-deficient hepatocytes exhibited large cytosolic lipid droplets and increased triglycerides (TGs). LRH-1-deficient mice fed high-fat diet displayed macrovesicular steatosis, liver injury, and glucose intolerance, all of which were reversed or improved by expressing wild-type human LRH-1. While hepatic lipid synthesis decreased and lipid export remained unchanged in mutants, elevated circulating free fatty acid helped explain the lipid imbalance in LRH-1AAV8-Cre mice. Lipidomic and genomic analyses revealed that loss of LRH-1 disrupts hepatic phospholipid composition, leading to lowered arachidonoyl (AA) phospholipids due to repression of Elovl5 and Fads2, two critical genes in AA biosynthesis. Our findings reveal a role for the phospholipid sensor LRH-1 in maintaining adequate pools of hepatic AA phospholipids, further supporting the idea that phospholipid diversity is an important contributor to healthy hepatic lipid storage.


Assuntos
Metabolismo dos Lipídeos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Acetiltransferases/metabolismo , Fatores Etários , Animais , Ácidos Araquidônicos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Fosfolipídeos/metabolismo , Cultura Primária de Células , Receptores Citoplasmáticos e Nucleares/genética , Transgenes/genética
4.
Bioorg Med Chem Lett ; 25(2): 276-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25479771

RESUMO

In vertebrates, soluble epoxide hydrolase (sEH) hydrolyzes natural epoxy-fatty acids (EpFAs), which are chemical mediators modulating inflammation, pain, and angiogenesis. Chick embryos are used to study angiogenesis, particularly its role in cardiovascular biology and pathology. To find potent and bio-stable inhibitors of the chicken sEH (chxEH) a library of human sEH inhibitors was screened. Derivatives of 1(adamantan-1-yl)-3-(trans-4-phenoxycyclohexyl) urea were found to be very potent tight binding inhibitors (KI <150pM) of chxEH while being relatively stable in chicken liver microsomes, suggesting their usefulness to study the role of EpFAs in chickens.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Ureia/análogos & derivados , Animais , Galinhas , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Ureia/farmacologia
5.
Bioorg Med Chem Lett ; 24(9): 2193-7, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24685540

RESUMO

A series of inhibitors of the soluble epoxide hydrolase (sEH) containing two urea groups has been developed. Inhibition potency of the described compounds ranges from 2.0 µM to 0.4 nM. 1,6-(Hexamethylene)bis[(adamant-1-yl)urea] (3b) was found to be a potent slow tight binding inhibitor (IC50=0.5 nM) with a strong binding to sEH (Ki=3.1 nM) and a moderately long residence time on the enzyme (koff=1.05 × 10(-3) s(-1); t1/2=11 min).


Assuntos
Adamantano/análogos & derivados , Adamantano/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Ureia/análogos & derivados , Ureia/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/metabolismo , Humanos , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA