Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Biochem Nutr ; 65(1): 16-22, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31379409

RESUMO

Plasma-activated medium (PAM) is a solution produced by exposing a liquid medium to non-thermal atmospheric pressure plasma (NTAPP). A number of reactive molecules, such as reactive oxygen species and reactive nitrogen species, are contained in PAM. Therefore, exposure to high doses of PAM results in cell death. We previously demonstrated that intracellular zinc (Zn2+) serves as an important mediator in PAM-induced cell death; however, the effects of sublethal treatment with PAM on cell functions are not fully understood. In the present study, we found that sublethal PAM treatment suppressed cell proliferation and induced senescence-like changes in lung adenocarcinoma A549 cells. Cell cycle analysis revealed that PAM induced cell cycle arrest at the G2/M phase. PAM increased the level of intracellular free Zn2+ and the Zn2+ chelator TPEN counteracted PAM-induced growth suppression, suggesting that Zn2+ functions in PAM-induced growth suppression. In addition, sublethal treatment with PAM induced phosphorylation of ATM kinase, accumulation of p53 protein, and expression of p21 and GADD45A, which are known p53 target genes, in a Zn2+-dependent manner. These results suggest that the induction of growth arrest and cellular senescence by sublethal PAM treatment is mediated by Zn2+-dependent activation of the ATM/p53 pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA