Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 18(1)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36270321

RESUMO

This paper presents a three-axis biomimetic gyroscope, mimicking the haltere of Diptera. Diptera use a club-shaped mechanosensory organ called the haltere to get the three-axis angular velocity information, namely roll, pitch and yaw axes, for flight control. One pair of halteres is physically connected to the wings of Diptera that vibrate in antiphase to the flapping wings in ambient air. They sense the Coriolis force and relay angular velocity information to the Diptera. As an alternative to the conventional micro-electro-mechanical system gyroscopes which are widely used in robotics, many research groups have attempted to mimic the haltere. However, no previous study succeeded in measuring all three-axis components of angular velocity, due to various shortcomings. In this paper, we developed the first three-axis haltere-mimicking gyroscope. Two perpendicularly positioned haltere-mimicking structures that can vibrate at a 180° amplitude were mechanically integrated into a robot actuator. Two accelerometers, placed at the tip of each structure, were employed to measure the Coriolis force. The performance of the novel biomimetic gyroscope was measured in all rotational directions, using a motion capture system as the ground truth. One-axis input experiments were performed 240 times at different input magnitudes and directions, and the measured orientation error was less than ±2.0% in all experiments. In 80 three-axis input experiments, the orientation error was less than ±3.5%.


Assuntos
Dípteros , Animais , Movimento (Física)
2.
ISA Trans ; 91: 125-134, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30795830

RESUMO

Asymptotic stabilization of a class of nonlinear systems with known constant long input delay is addressed in the presence of external disturbance by applying sliding mode control method. Modified prediction variable scheme is employed to compensate long delays in the input, where conventional prediction variable approaches cannot be employed. This is mainly due to the fact that the external disturbance appears in the prediction variable, which renders the controller dependent on the external disturbance. In order to tackle this problem, the nonlinear disturbance observer based predictor is used. A suitable disturbance observer is designed to estimate the external disturbance that appears in the prediction variable. Respected to some existing results, the prediction-based control for more general class of the nonlinear systems in the presence of external disturbance is the main contribution of this paper. Actuator and sensor delays exist in the most common dynamic systems. So, the proposed control scheme can be employed in many conventional systems. The simulation results indicate the robustness and efficiency of the proposed controller.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA