Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(47): eade4284, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417509

RESUMO

A fully rubbery stretchable diode, particularly entirely based on stretchy materials, is a crucial device for stretchable integrated electronics in a wide range of applications, ranging from energy to biomedical, to integrated circuits, and to robotics. However, its development has been very nascent. Here, we report a fully rubbery Schottky diode constructed all based on stretchable electronic materials, including a liquid metal cathode, a rubbery semiconductor, and a stretchable anode. The rubbery Schottky diode exhibited a forward current density of 6.99 × 10-3 A/cm2 at 5 V and a rectification ratio of 8.37 × 104 at ±5 V. Stretchy rectifiers and logic gates based on the rubbery Schottky diodes were developed and could retain their electrical performance even under 30% tensile stretching. With the rubbery diodes, fully rubbery integrated electronics, including an active matrix multiplexed tactile sensor and a triboelectric nanogenerator-based power management system, are further demonstrated.

2.
Proc Natl Acad Sci U S A ; 119(23): e2204852119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648822

RESUMO

Cephalopod (e.g., squid, octopus, etc.) skin is a soft cognitive organ capable of elastic deformation, visualizing, stealth, and camouflaging through complex biological processes of sensing, recognition, neurologic processing, and actuation in a noncentralized, distributed manner. However, none of the existing artificial skin devices have shown distributed neuromorphic processing and cognition capabilities similar to those of a cephalopod skin. Thus, the creation of an elastic, biaxially stretchy device with embedded, distributed neurologic and cognitive functions mimicking a cephalopod skin can play a pivotal role in emerging robotics, wearables, skin prosthetics, bioelectronics, etc. This paper introduces artificial neuromorphic cognitive skins based on arrayed, biaxially stretchable synaptic transistors constructed entirely out of elastomeric materials. Systematic investigation of the synaptic characteristics such as the excitatory postsynaptic current, paired-pulse facilitation index of the biaxially stretchable synaptic transistor under various levels of biaxial mechanical strain sets the operational foundation for stretchy distributed synapse arrays and neuromorphic cognitive skin devices. The biaxially stretchy arrays here achieved neuromorphic cognitive functions, including image memorization, long-term memorization, fault tolerance, programming, and erasing functions under 30% biaxial mechanical strain. The stretchy neuromorphic imaging sensory skin devices showed stable neuromorphic pattern reinforcement performance under both biaxial and nonuniform local deformation.


Assuntos
Órgãos Artificiais , Robótica , Pele , Sinapses , Animais , Cefalópodes , Cognição , Pele/inervação , Transistores Eletrônicos
3.
ACS Appl Mater Interfaces ; 14(22): 26004-26013, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604641

RESUMO

As attractive photoactive materials, metal halide perovskites demonstrate outstanding performance in a wide range of optoelectronic applications. Among the various compositions studied, mixed-halide perovskites have a finely tunable band gap that renders them desirable for targeted applications. Despite their advantages, photoinduced halide segregation often deters the photoelectric stability of the materials. Herein, we adopt a strategy of post-treating the perovskite surface with an organic spacer to generate a two-dimensional (2D) perovskite passivating layer. Trap-assisted recombination pathways can be selectively modulated by passivating the surface halide defects that cause photoinduced halide segregation. Fluorescence lifetime imaging of flat and bent surfaces of perovskites reveals that the perovskite lattice tolerates mechanical strain via the neutralizing passivation of ionic halide defects. Upon bending, the photocurrent response of the flexible photodetector is maintained over 83% for 2D passivated perovskite and drops to 23% for pristine perovskite. A flexible photodetector array built with 2D passivated perovskite, in combination with a deep learning algorithm, demonstrates excellent accuracy in determining letters of the alphabet for both flat (>96%) and bent (>93%) states. The connection of chemically modified charge carrier dynamics and mechanical properties revealed in this study offers valuable guidance for developing next-generation optoelectronic applications.

4.
Nat Commun ; 11(1): 3823, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732934

RESUMO

An accurate extraction of physiological and physical signals from human skin is crucial for health monitoring, disease prevention, and treatment. Recent advances in wearable bioelectronics directly embedded to the epidermal surface are a promising solution for future epidermal sensing. However, the existing wearable bioelectronics are susceptible to motion artifacts as they lack proper adhesion and conformal interfacing with the skin during motion. Here, we present ultra-conformal, customizable, and deformable drawn-on-skin electronics, which is robust to motion due to strong adhesion and ultra-conformality of the electronic inks drawn directly on skin. Electronic inks, including conductors, semiconductors, and dielectrics, are drawn on-demand in a freeform manner to develop devices, such as transistors, strain sensors, temperature sensors, heaters, skin hydration sensors, and electrophysiological sensors. Electrophysiological signal monitoring during motion shows drawn-on-skin electronics' immunity to motion artifacts. Additionally, electrical stimulation based on drawn-on-skin electronics demonstrates accelerated healing of skin wounds.


Assuntos
Monitorização Fisiológica/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Pele/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Artefatos , Estimulação Elétrica , Epiderme/fisiologia , Humanos , Movimento (Física) , Semicondutores , Auxiliares Sensoriais , Pele/lesões , Cicatrização
5.
Sci Adv ; 5(10): eaax4961, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31646177

RESUMO

Artificial synaptic devices that can be stretched similar to those appearing in soft-bodied animals, such as earthworms, could be seamlessly integrated onto soft machines toward enabled neurological functions. Here, we report a stretchable synaptic transistor fully based on elastomeric electronic materials, which exhibits a full set of synaptic characteristics. These characteristics retained even the rubbery synapse that is stretched by 50%. By implementing stretchable synaptic transistor with mechanoreceptor in an array format, we developed a deformable sensory skin, where the mechanoreceptors interface the external stimulations and generate presynaptic pulses and then the synaptic transistors render postsynaptic potentials. Furthermore, we demonstrated a soft adaptive neurorobot that is able to perform adaptive locomotion based on robotic memory in a programmable manner upon physically tapping the skin. Our rubbery synaptic transistor and neurologically integrated devices pave the way toward enabled neurological functions in soft machines and other applications.

6.
Sci Adv ; 5(2): eaav5749, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30746492

RESUMO

An intrinsically stretchable rubbery semiconductor with high mobility is critical to the realization of high-performance stretchable electronics and integrated devices for many applications where large mechanical deformation or stretching is involved. Here, we report fully rubbery integrated electronics from a rubbery semiconductor with a high effective mobility, obtained by introducing metallic carbon nanotubes into a rubbery semiconductor composite. This enhancement in effective carrier mobility is enabled by providing fast paths and, therefore, a shortened carrier transport distance. Transistors and their arrays fully based on intrinsically stretchable electronic materials were developed, and they retained electrical performances without substantial loss when subjected to 50% stretching. Fully rubbery integrated electronics and logic gates were developed, and they also functioned reliably upon mechanical stretching. A rubbery active matrix based elastic tactile sensing skin to map physical touch was demonstrated to illustrate one of the applications.

7.
Sci Rep ; 8(1): 3331, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463829

RESUMO

We demonstrate wide colour tunability of polydimethylsiloxane-based alternating-current-driven electroluminescent devices with intrinsically stretchable characteristics achieved by simply modulating the electrical frequency. By employing both a screen-printed emitting layer and frequency-dependent colour tuning of ZnS:Cu-based phosphors, we demonstrate various coloured patterned images in a single device. We also show enhanced colour-tuning performance by mixing multi-colour phosphors, which results in a broad range of available coordinates in colour space. We believe that our demonstrated method could be used for manipulating broader colour expression as well as in various applications involving stretchable devices.

8.
ACS Appl Mater Interfaces ; 6(20): 17804-14, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25244525

RESUMO

We report the formation of laterally stacked ambipolar crystal wire for high-mobility organic field-effect transistors (OFETs), along with a simple logic circuit through a solution process. A soluble pentacene derivative, 6,13-bis(triisopropylsilylethynyl)pentacene (Tips-pentacene), and N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) were used as p-type and n-type organic semiconductors, respectively. The laterally stacked ambipolar crystal wire is made up of Tips-pentacene and PTCDI-C8 crystals in a structure of Tips-pentacene/PTCDI-C8/Tips-pentacene (TPT). The inner part of the crystal is made up of PTCDI-C8, and Tips-pentacene is present on both sides. These TPT crystals exhibit typical ambipolar charge transport behavior in organic electronic devices, which show very balanced hole and electron mobility as high as 0.23 cm(2)/V·s and 0.13 cm(2)/V·s, respectively. Static and dynamic operational stability of the device is investigated by measuring the device performance as a function of storage time and applying voltage pulse, respectively, and it shows good air stability. In addition, a simple logic circuit based on the TPT crystal wire has been fabricated, and the static and dynamic performance has been evaluated. The results indicate that the TPT crystals are potentially useful for miniaturized organic electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA