Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Chim Acta ; 557: 117882, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38521164

RESUMO

The rising incidence and mortality rates of cancer have led to a growing need for precise and prompt early diagnostic approaches to effectively combat this disease. However, traditional methods employed for detecting tumor cells, such as histopathological and immunological techniques, are often associated with complex procedures, high analytical expenses, elevated false positive rates, and a dependence on experienced personnel. Tracking tumor markers is recognized as one of the most effective approaches for early detection and prognosis of cancer. While onco-biomarkers can also be produced in normal circumstances, their concentration is significantly elevated when tumors are present. By monitoring the levels of these markers, healthcare professionals can obtain valuable insights into the presence, progression, and response to treatment of cancer, aiding in timely diagnosis and effective management. This review aims to provide researchers with a comprehensive overview of the recent advancements in tumor markers using electrochemical immunosensors. By highlighting the latest developments in this field, researchers can gain a general understanding of the progress made in the utilization of electrochemical immunosensors for detecting tumor markers. Furthermore, this review also discusses the current limitations associated with electrochemical immunosensors and offers insights into paving the way for further improvements and advancements in this area of research.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Biomarcadores Tumorais , Técnicas Eletroquímicas , Imunoensaio/métodos , Neoplasias/diagnóstico
2.
Nanoscale Adv ; 5(23): 6489-6500, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38024314

RESUMO

Sunlight-powered photocatalysts made from CeO2 nanosized particles and g-C3N4 nanostructures were produced through a thermal decomposition process with urea and cerium nitrate hexahydrate. The preparation of g-C3N4, CeO2, and a binary nanostructured g-C3N4/CeO2 photocatalyst was done through a facile thermal decomposition method. The structural properties were analyzed using powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS). Photocatalyst properties were characterized by using crystal violet (CV), a UV-Vis spectrophotometer, photocurrent and electron impedance spectroscopy (EIS). The structural and morphological analyses revealed that the g-C3N4/CeO2 nanostructures significantly enhanced the photoactivity for CV dye degradation under simulated sunlight, with a degradation rate of 94.5% after 105 min, compared to 82.5% for pure g-C3N4 and 45% for pure CeO2. This improvement was attributed to the noticeable visible light absorption and remarkable charge separation abilities of the nanostructures. Additionally, the g-C3N4/CeO2 nanostructures showed notable PEC performance under simulated sunlight. This study presents an easy and efficient method for producing g-C3N4 photocatalysts decorated with semiconductor materials and provides insights for designing nanostructures for photocatalytic and energy applications.

3.
J Phys Chem Lett ; 14(42): 9412-9423, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37824426

RESUMO

Graphitic carbon nitride (CN) is a cost-effective and easily synthesized supercapacitor electrode material. However, its limited specific capacity has hindered its practical use. To address this, we developed a binary nanostructure by growing nanosized Co3O4 particles on CN. The CN-Co-2 composite, synthesized via thermal decomposition, exhibited a remarkable specific capacity of 280.64 C/g at 2 A/g. Even under prolonged cycling at 10.5 A/g, the retention rate exceeded 95%, demonstrating exceptional stability. In an asymmetric capacitor device, the CN-Co composite delivered 20.84 Wh/kg at 1000 W/kg, with a retention rate of 99.97% over 20,000 cycles, showcasing outstanding cycling stability. Controlled cobalt source adjustments yielded high-capacity electrode materials with battery-like behavior. This optimization strategy enhances energy density by retaining battery-like properties. In summary, the CN-Co composite is a promising, low-cost, easily synthesized electrode material with a high specific capacity and remarkable cycling stability, making it an attractive choice for energy storage applications.

4.
Nanomaterials (Basel) ; 13(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764537

RESUMO

The contamination of water by organic substances poses a significant global challenge. To address these pressing environmental and energy concerns, this study emphasizes the importance of developing effective photocatalysts powered by sunlight. In this research, we achieved the successful synthesis of a novel photocatalyst comprised of polymeric carbon nitride (CN) nanosheets embedded with Co3O4 material, denoted as CN-CO. The synthesis process involved subjecting the mixture to 500 °C for 10 h in a muffle furnace. Structural and morphological analyses confirmed the formation of CN-CO nanostructures, which exhibited remarkable enhancements in photocatalytic activity for the removal of methylene blue (MB) pollutants under replicated sunlight. After 90 min of exposure, the degradation rate reached an impressive 98.9%, surpassing the degradation rates of 62.3% for pure CN and 89.32% for pure Co3O4 during the same time period. This significant improvement can be attributed to the exceptional light captivation capabilities and efficient charge separation abilities of the CN-CO nanostructures. Furthermore, the CN-CO nanostructures demonstrated impressive photocurrent density-time (j-t) activity under sunlight, with a photocurrent density of 2.51 µA/cm2 at 0.5 V. The CN-CO nanostructure exhibited excellent methanol oxidation reaction (MOR) activity with the highest current density of 83.71 mA/cm2 at an optimal 2 M methanol concentration, benefiting from the synergy effects of CN and CO in the nanostructure. Overall, this study presents a straightforward and effective method for producing CN-based photocatalysts decorated with semiconductor nanosized materials. The outcomes of this research shed light on the design of nanostructures for energy-related applications, while also providing insights into the development of efficient photocatalytic materials for addressing environmental challenges.

5.
Chemosphere ; 341: 139955, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37652247

RESUMO

The photocatalytic removal of toxic chemical pollutants from wastewater has garnered significant attention in recent times owing to its notable removal efficiency, cost-effectiveness, and eco-friendly characteristics. Nonetheless, this catalytic process necessitates augmented charge separation and distinctive interface properties to facilitate catalytic reactions for water treatment applications. Therefore, in the current study, novel g-C3N4/Ni-doped ZrO2 heterostructured hybrid catalysts have been synthesized via a hydrothermal approach. Microscopic studies reveal that ZrO2 nanospheres were distributed on the layered-like 2D structure of g-C3N4 nanosheets. Electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) characterizations were employed to investigate the impact of bandgap, electron-hole recombination, charge transfer, and interface properties on the catalytic performance of g-C3N4/ZrO2 hybrids. XRD analysis confirmed that the Ni-ions do not disturb the host lattice crystal structure and heterostructure development between g-C3N4 and doped ZrO2 sample. Structurally, Ni-doped nanoparticles were found to be equally superficially dispersed on g-C3N4 sheets. Optical analysis results suggest that the hybrid catalyst possesses a narrow bandgap of 2.56 eV. The synthesized photocatalyst degraded rhodamine B (RhB) and tetracycline (TC) with ∼92% and ∼89% degradation efficiency, respectively. Heterostructured hybrid catalysts showed superior degradation rate constants than other catalysts. This might be attributed to the sufficient separation of electron-hole due to the development of a heterojunction. The radical scavenging experiments suggested that O2●- and ●OH radicals contributed substantially to the dye elimination activity of the composite. Therefore, the synthesized novel nanohybrid catalysts in this study present an efficient and straightforward synthesis method for the efficient removal of toxins from wastewater under visible light irradiation.


Assuntos
Poluentes Ambientais , Nanosferas , Níquel , Fotólise , Águas Residuárias , Luz
6.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985459

RESUMO

An innovative form of 2D/0D g-C3N4/CeO2 nanostructure was synthesized using a simple precursor decomposition process. The 2D g-C3N4 directs the growth of 0D CeO2 quantum dots, while also promoting good dispersion of CeO2QDs. This 2D/0D nanostructure shows a capacitance of 202.5 F/g and notable rate capability and stability, outperforming the g-C3N4 electrode, reflecting the state-of-the-art g-C3N4 binary electrodes. The binary combination of materials also enables an asymmetric device (g-C3N4/CeO2QDs//AC) to deliver the highest energy density (9.25 Wh/kg) and power density (900 W/kg). The superior rate capacity and stability endorsed the quantum structural merits of CeO2QDs and layered g-C3N4, which offer more accessible sites for ion transport. These results suggest that the g-C3N4/CeO2QDs nanostructure is a promising electrode material for energy storage devices.

7.
Environ Res ; 227: 115735, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001849

RESUMO

InVO4 is the most attractive inorganic new-generation material for advanced scientific research, especially in the fields of energy and environmental science. In theory, this stable, non-toxic, energy-efficient metal vanadate semiconductor is expected to exhibit significant catalytic activity owing to its narrow bandgap energy. However, this has not been achieved in practice because of its inherent defects in terms of the separation and migration of charge carriers. In fact, the exploration of this material is still in its infancy, and more research is needed to improve its efficiency and speed up its commercialization. Band gap engineering using heterojunction formation offers better results than other methods, such as morphological variations and doping efforts. In this context, the present study offers a significant solution substantiated by experimental results. This includes the successful synthesis of a novel nanocomposite of InVO4 nanosheets decorated with ZnWO4 nanorods with a unique improved light absorption ability. Three composites with 26.48-33.85 nm crystal sizes and 11.74-19.98 m2/g surface area were prepared with tailor-made bandgap energies in the range of 2.52-2.97 eV. Furthermore, they produced high photoexcitation currents with low EIS resistance with respect to their constituents. The as-prepared InVO4-based novel catalyst almost completely (98.33%) decomposed tetracycline (TC) antibiotic in just 90 min, proving its high efficacy. The enhanced performance of the novel catalyst is 7.6 times that of InVO4 and 10 times that of ZnWO4. Moreover, the catalyst intake was significantly small (15 mg/100 mL TC solution).


Assuntos
Nanocompostos , Nanotubos , Luz Solar , Nanocompostos/química , Antibacterianos , Catálise , Luz
8.
Materials (Basel) ; 16(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36984303

RESUMO

Bimetal-organic frameworks (BMOFs) have attracted considerable attention as electrode materials for energy storage devices because of the precise control of their porous structure, surface area, and pore volume. BMOFs can promote multiple redox reactions because of the enhanced charge transfer between different metal ions. Therefore, the electroactivity of the electrodes can be significantly improved. Herein, we report a NiCo-MOF (NCMF) with a three-dimensional hierarchical nanorod-like structure prepared using a facile solvo-hydrothermal method. The as-prepared NCMF was used as the positive electrode in a hybrid pouch-type asymmetric supercapacitor device (HPASD) with a gel electrolyte (KOH+PVA) and activated carbon as the negative electrode. Because of the matchable potential windows and specific capacitances of the two electrodes, the assembled HPASD exhibits a specific capacitance of 161 F·g-1 at 0.5 A·g-1, an energy density of 50.3 Wh·kg-1 at a power density of 375 W·kg-1, and a cycling stability of 87.6% after 6000 cycles. The reported unique synthesis strategy is promising for producing high-energy-density electrode materials for supercapacitors.

9.
Environ Res ; 225: 115585, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36854374

RESUMO

In recent years, antibiotic drugs have been extensively used owing to increased industrial growth, and this has created issues related to drinking water and a green environment. Different techniques have been used to resolve these issues, among which heterogeneous photocatalysis has been widely explored for the elimination of toxic compounds from wastewater resources. In this study, ZnIn2S4, g-C3N4, and ZnIn2S4/g-C3N4 hybrid heterostructured composites are synthesized via hydrothermal method and used these (i) for the removal of antibiotic sulfamethoxazole pollutant and (ii) photoelectrochemical water oxidation. The nanomaterials were characterized using X-ray diffraction, Scanning electron microscopy, transmission electron microscopy, and UV-vis spectroscopy. The developed hybrid heterostructured composites were able to degrade sulfamethoxazole pollutants as well as offer improved photoelectrochemical properties compared to pristine samples. The catalytic performance of the materials developed under visible light irradiation was greatly improved for the degradation of the antibiotic drug up to 89.4% in 2 h. Moreover, the hybrid heterostructured photoelectrode showed a better photocurrent density (8.68 mA/cm2) and exhibited ∼19.2 and 29.9 times greater photocurrent density than the pristine photoelectrodes. Such a considerably increased catalytic activity was attributed to the active separation of charge carriers and transmission. The study offers an innovative approach to develop effective catalysts, and for the degradation of sulfamethoxazole as well as the PEC properties for hydrogen production.


Assuntos
Antibacterianos , Poluentes Ambientais , Sulfametoxazol , Luz , Água , Oxirredução
10.
Chemosphere ; 322: 138146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36806805

RESUMO

Novel heterostructured hybrid catalysts are essential for the efficient photocatalytic removal of organic pollutants from wastewater generated by the pharmaceutical and textile industries. In this study, novel g-C3N4/BiVO4 nanohybrid catalysts were prepared using a solvothermal technique, and examined their structural and optical properties using different characterizations. The X-ray diffraction analysis confirmed the monoclinic crystal phase of BiVO4. Field emission scanning electron microscopy (FESEM) images revealed that g-C3N4 sheets anchored on the surface of BiVO4 nanospheres. X-ray photoelectron spectroscopy (XPS) analysis confirmed the oxidation states of g-C3N4/BiVO4 composite sample. UV-Vis DRS spectroscopy analysis revealed that the composite (2.08 eV) sample had a reduced bandgap compared to other samples. The photocatalytic properties of the prepared samples were tested in the presence of organic methylene blue (MB) and antibiotic tetracycline (TC) pollutants under visible light illumination. The hybrid composite catalyst exhibited enhanced photocatalytic degradation efficiency of MB (88%) and TC (89%) pollutants at elevated rate constants of 0.0128 and 0.01174 min-1, respectively. The improved catalytic performance of the composite catalyst is due to the heterojunctions between g-C3N4 and BiVO4 that successfully reduced the rate of charge carrier recombination in the catalyst system. Scavenger experiments revealed that O2●- and h+ radicals played a main role in the degradation of the chemical pollutants. The developed g-C3N4/BiVO4 heterostructured catalyst is a suitable candidate for removing contaminants from industrial wastewater because of its facile fabrication and exceptional photocatalytic activity under visible light irradiation.


Assuntos
Poluentes Ambientais , Fotólise , Águas Residuárias , Espectroscopia Fotoeletrônica , Microscopia Eletrônica de Varredura , Luz , Antibacterianos , Tetraciclina
11.
Phys Chem Chem Phys ; 25(5): 3758-3765, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644907

RESUMO

The sustainable rise in global warming and the consumption of fossil fuels considerably contribute to energy and environmental issues. To address these issues, semiconductor heterostructures can be used to generate clean energy sources as alternative energy sources and to reduce environmental impacts. Herein, we report the synthesis of a ternary semiconductor of the CdS/WO3/g-C3N4 (i.e. C-CNW) nanostructured composite for hydrogen production and dye degradation under visible-light irradiation. The structural properties of the prepared materials were studied using a series of investigational analyses. The 3C-CNW nanostructure photocatalyst exhibited faster malachite green (MG) dye photodegradation within 105 min and the highest hydrogen production rate is 868.23 µmol g-1 h-1 under visible light illumination. Moreover, the photocatalytic hydrogen production of the 3C-CNW nanostructure photocatalyst with various scavengers was analyzed. Its higher photocatalytic activity is ascribed to the Z-scheme mechanism, which induces rapid diffusion of photoinduced charges within the ternary photocatalyst with its optical bandgap. This proposed strategy is useful to improve photocatalysts that play a role in mitigating energy and environmental issues.

12.
Environ Res ; 220: 115191, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36587724

RESUMO

In the present study, novel InVO4/SnWO4 nanocomposites with different concentrations of SnWO4 were successfully prepared using a facile hydrothermal technique and investigated employing a wide range of analytical methods for efficient photocatalytic degradation of tetracycline (TC). X-ray diffraction analysis showed the presence of the orthorhombic phases of both InVO4 and SnWO4 in the composite catalyst. Dispersion of SnWO4 nanoplates over the InVO4 nanosheets enhanced the synergistic interactions, improving the separation of charge carriers and their transfer. Furthermore, the formation of heterostructure expanded the absorption range and promoted visible light harvesting. The TC degradation efficiency of InVO4/SnWO4 nanocomposite (5 mg loading of SnWO4) reached 97.13% in 80 min under visible light, with the kinetic rate constants 5.51 and 7.63 times greater than those of pure InVO4 and SnWO4, respectively. Additionally, the scavenger results proved that hydroxyl radicals and holes played a significant role in the photodegradation of TC. Furthermore, the electrochemical impedance spectroscopy (EIS) and transient photocurrent response analysis showed enhanced e-/h+ partition efficiency. Thus, the formation of heterostructure with strong synergistic interactions can effectively transfer the excited charge carriers and shorten the reunion rate. Accordingly, the InVO4/SnWO4 nanocomposites exhibited remarkable photocatalytic performance due to the increased number of charge carriers on the surface.


Assuntos
Antibacterianos , Nanocompostos , Antibacterianos/química , Tetraciclina/química , Fotólise , Nanocompostos/química , Catálise , Luz
13.
Environ Res ; 217: 114923, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435491

RESUMO

The worldwide energy calamity and ecological disturbances demand materials that can remove harmful contaminants from the polluted water. Recently, semiconductor-based catalytic dye removal has created much consideration due to its high efficacy and eco-friendly contaminated water treatment processes. Vanadium oxide (V2O5) has attracted superior attention as a catalyst due to its robust oxidation power, chemical inertness, and stability against photodegradation. In this study, pristine and cobalt (Co)-doped V2O5 samples were synthesized by solvothermal method and examined for their photo-degradation activity and photoelectrochemical (PEC) water oxidation properties. The orthorhombic crystal phase was confirmed by X-ray diffraction (XRD), hexagonal-shaped morphology was observed by scanning electron microscope (SEM) and reduced optical band gap (2.01 eV) was noticed for doped V2O5 catalyst compared to the pristine (2.20 eV) catalyst. The doped V2O5 catalyst exhibited enhanced photodegradation of crystal violet CV (92.7%) and Cr (VI) reduction (90.5%) after 100 min of light irradiation. The doped photocatalyst exhibited approximately 2.1 and 1.9-fold enhancement of photodegradation of CV and Cr(VI) reduction, respectively. The doped electrode showed improved photocurrent density (0.54 mA/cm-2) compared to pristine electrode (0.12 mA/cm-2). Moreover, the doped electrode showed reduced charge-transfer resistance and enhanced charge-transfer properties compared to those of the pristine electrode. Hence, the prepared hexagonal-shaped V2O5 is a suitable material for the elimination of environmental contaminants from the polluted water as well as water splitting for hydrogen generation.


Assuntos
Cobalto , Poluentes Ambientais , Oxirredução , Óxidos/química , Fotólise , Catálise
14.
Chemosphere ; 311(Pt 1): 137015, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36342024

RESUMO

Photodegradation of organic pollutants using metal oxides has shown extraordinary promise owing to the catalytic efficacy, low cost, less noxiousness, and good chemical constancy. In this research, pure and transition metal ions (Cu)-doped V2O5 nanosheets were synthesized and investigated for their photocatalytic efficiency using methyl blue (MB) and rhodamine B (RhB) organic dye pollutants under visible light irradiation. The orthorhombic crystal phase was confirmed by XRD analysis, which exhibited a stable phase upon incorporating Cu dopant ions. Optical properties were examined using optical absorption spectroscopy, while a reduced band gap was observed in the doped V2O5 nanosheets over the undoped sample. EIS analysis confirmed lower charge resistance in doped V2O5 nanosheets. The Cu dopant incorporation into the host matrix considerably enhanced photodegradation efficiency for MB and RhB impurities under light illumination. The improvement in catalytic efficacy is attributed to dopant ions that can separate photoinduced charge carriers and the quick movement of the charge. Moreover, comparatively lesser crystalline size, improved specific surface area, and hydroxyl group onto the catalyst surface are quite advantageous to offer better photocatalytic activity of Cu-doped V2O5 nanosheets.


Assuntos
Poluentes Ambientais , Fotólise , Poluentes Ambientais/análise , Luz , Catálise , Corantes/química
15.
Environ Res ; 217: 114672, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356664

RESUMO

Photocatalytic dye degradation is a method of environmental degradation that is commonly used to eliminate various pollutants produced by pharmaceutical and textile industries. Herein, pure and chromium (Cr)-doped SnO2 nanoflakes were synthesized using a simple facile hydrothermal method and photocatalytic properties were studied under visible light illumination. In addition, photoelectrochemical (PEC) water oxidation properties were also studied using the prepared samples. Doping of transition metal ions introduces structural defects, which narrow the band gap of host sample, resulting in high catalytic activity. The synthesized doped SnO2 displayed a rutile tetragonal crystal phase with a nanoflakes-like surface morphology having no other contaminations. The optical band gap of Cr-doped SnO2 nanoflakes was significantly reduced (2.48 eV) over the pure sample (3.32 eV), due to successful incorporation of Cr ions into the host lattice. Furthermore, the dye removal efficiency of these nanoflakes was investigated for methyl orange (MO) and tetracycline (TC) organic contaminations. The Cr-doped SnO2 nanoflakes exhibited superior photodegradation with 87.8% and 90.6% dye removal efficiency, within 90 min of light illumination. PEC water oxidation analysis showed that the doped photoelectrode achieved enhanced photocurrent density and showed a higher photocurrent density (1.08 mA cm-2) over that of the undoped electrode (0.60 mA cm-2). Electrochemical impedance spectroscopy (EIS) showed that doped electrodes exhibited lesser charge resistance than the pure electrode. The synthesized Cr-doped SnO2 nanoflakes are suitable for water oxidation and photodegradation of organic pollutants. Thus, we strongly believe that the obtained results in this report will continue to provide new opportunities for the improvement of effective visible light photocatalysts for industrial wastewater treatment and water splitting for H2 generation.


Assuntos
Poluentes Ambientais , Água , Água/química , Cromo , Oxirredução , Luz
16.
Nanomaterials (Basel) ; 14(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38202517

RESUMO

With the growing demand for technologies to sustain high energy consumption, supercapacitors are gaining prominence as efficient energy storage solutions beyond conventional batteries. MXene-based electrodes have gained recognition as a promising material for supercapacitor applications because of their superior electrical conductivity, extensive surface area, and chemical stability. This review provides a comprehensive analysis of the recent progress and strategies in the development of MXene-based electrodes for supercapacitors. It covers various synthesis methods, characterization techniques, and performance parameters of these electrodes. The review also highlights the current challenges and limitations, including scalability and stability issues, and suggests potential solutions. The future outlooks and directions for further research in this field are also discussed, including the creation of new synthesis methods and the exploration of novel applications. The aim of the review is to offer a current and up-to-date understanding of the state-of-the-art in MXene-based electrodes for supercapacitors and to stimulate further research in the field.

17.
Chemosphere ; 308(Pt 2): 136414, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36099985

RESUMO

Photodegradation is an eco-friendly degradation process routinely employed for the removal of various pollutants produced by pharmaceutical and textile industries. In this work, g-C3N4 sheets (g-CN) supported with Fe-doped ZrO2 nanoparticles have been prepared via a facile hydrothermal method as photocatalysts for the effective photodegradation of methyl orange (MO) and tetracycline (TC). The as-prepared photocatalysts were characterized by using a wide range of techniques to understand the origin of their superior photodegradation performance. Structurally, Fe-doped ZrO2 nanoparticles were found to be uniformly superficially distributed on g-C3N4. The addition of Fe-doped ZrO2 nanoparticles was also found to improve the surface area and light absorption capacity of pure g-CN. It was further revealed that the development of heterojunctions between g-C3N4 and Fe-doped ZrO2 nanoparticles effectively reduced the recombination rate of electron and hole pairs within the photocatalyst system, resulting in improved photocatalytic activity. Previous studies have pointed at the superoxide radical anions (˙O2-) and (OH·) as being primarily responsible for the degradation of MO and TC species, leading us to hypothesize that the g-FZ composite works via a possible free-radical based catalytic mechanism to support the photodegradation process.


Assuntos
Poluentes Ambientais , Nanopartículas , Antibacterianos , Compostos Azo , Luz , Preparações Farmacêuticas , Superóxidos , Tetraciclina
18.
Chem Asian J ; 17(22): e202200685, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36052888

RESUMO

Binder-free two-dimensional mesh-like structure of nickel-zinc metal-organic framework on in-situ-coated carbon cloth (Ni-Zn MOF/CC) and Ni-Zn MOF powder were developed via a solvo-hydrothermal reaction for electrochemical storage application. The electrochemical properties of these electrodes show that the electrodes self-assembled on carbon cloth substrates exhibit remarkably excellent performance. The Ni-Zn MOF/CC electrode exhibited a capacitance of 653.54 F/g at 1 A/g through a capacity retaining of 87.65% after 10000 cycles. Furthermore, the Ni-Zn MOF//AC coin-cell asymmetric supercapacitor device (CASD) exhibited remarkable energy and power densities of 54.31 Wh/kg and 825 W/kg, respectively, with adequate capacitance retention up to 94.63% over 5000 cycles at 1.5 V. The CASD also exhibited a significant power density of 4950 W/kg at 19.67 W h/kg, which suggests that these in-situ developed MOF-based electrodes may discover application in energy storage devices.

19.
Diagnostics (Basel) ; 12(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741289

RESUMO

An automatic pathological diagnosis is a challenging task because histopathological images with different cellular heterogeneity representations are sometimes limited. To overcome this, we investigated how the holistic and local appearance features with limited information can be fused to enhance the analysis performance. We propose an unsupervised deep learning model for whole-slide image diagnosis, which uses stacked autoencoders simultaneously feeding multiple-image descriptors such as the histogram of oriented gradients and local binary patterns along with the original image to fuse the heterogeneous features. The pre-trained latent vectors are extracted from each autoencoder, and these fused feature representations are utilized for classification. We observed that training with additional descriptors helps the model to overcome the limitations of multiple variants and the intricate cellular structure of histopathology data by various experiments. Our model outperforms existing state-of-the-art approaches by achieving the highest accuracies of 87.2 for ICIAR2018, 94.6 for Dartmouth, and other significant metrics for public benchmark datasets. Our model does not rely on a specific set of pre-trained features based on classifiers to achieve high performance. Unsupervised spaces are learned from the number of independent multiple descriptors and can be used with different variants of classifiers to classify cancer diseases from whole-slide images. Furthermore, we found that the proposed model classifies the types of breast and lung cancer similar to the viewpoint of pathologists by visualization. We also designed our whole-slide image processing toolbox to extract and process the patches from whole-slide images.

20.
Chemosphere ; 305: 135465, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35753425

RESUMO

This paper describes a simple in-situ hydrothermal technique for the production of BiVO4/MoS2 binary nanocomposites as visible-light-driven catalysts. The as-prepared samples were analyzed by structural, morphological, compositional, optical, surface area, and photocurrent analyses. The lattice fringe spaces at 0.304 nm and 0.612 nm were indexed to the (112) and (002) crystal planes of BiVO4 and MoS2, respectively. Antibacterial photocatalytic capabilities were assessed using tetracycline (TC). Consequently, it was observed that the BiVO4/MoS2 nanocomposite demonstrated improved antibacterial removal ability compared with the pristine samples. The BiVO4/MoS2 nanocomposite exhibited 97.46% removal of TC compared with the pure BiVO4 (43.76%) and MoS2 (35.28%) samples within 90 min. Thus, the photocatalytic performance was observed to follow the given order: BiVO4/MoS2 nanocomposite > BiVO4 > MoS2. The removal of TC after 90 min of irradiation was approximately 97.46%, 96.62%, 95.59%, and 94.45% after the 1st, 2nd, 3rd, and 4th cycles, respectively. Thus, the recycling tests revealed the stability of the photocatalyst, which exhibited a TC removal efficiency of 94.45% without distinct decay, even after the 4th cycle. According to the trapping results, hydroxyl radicals and holes were the key species and demonstrated a greater influence on the photocatalytic performance than superoxide radicals. The increased activity of the BiVO4/MoS2 nanocomposite may be attributed to its large surface area and tunable bandgap, which accelerate the charge-transport characteristics of the photocatalytic system. This insight and synergetic effects can provide a new approach for the development of novel heterostructure photocatalysts.


Assuntos
Bismuto , Vanadatos , Antibacterianos/química , Bismuto/química , Catálise , Luz , Molibdênio , Tetraciclina , Vanadatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA