Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cerebrovasc Endovasc Neurosurg ; 26(1): 71-78, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37718482

RESUMO

Dural arteriovenous fistula (DAVF) is a rare condition affecting approximately 1.5% of 1,000,000 individuals annually. It frequently occurs in the transsigmoid and cavernous sinuses. An isolated sigmoid sinus is extremely rare and is treated by performing transfemoral transvenous embolization along the opposite transverse sinus. A 69-year-old woman presented with asymptomatic Borden type III/Cognard type III DAVF involving an isolated sigmoid sinus. She underwent a staged operation in which a navigation system was used to expose the sigmoid sinus in the operating room before transferring the patient to the angio suite for transvenous embolization. Various modalities have been used to treat DAVF, including surgical disconnection, transarterial embolization, transvenous embolization, and stereotactic radiosurgery. However, treating DAVF cases where the affected sinus is isolated can be challenging because an easily accessible surgical route may not be available. In this case, direct sinus cannulation and transvenous embolization were the most effective treatments.

2.
RSC Adv ; 12(20): 12891-12901, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35496332

RESUMO

The development of non-precious trimetallic electrocatalysts exhibiting high activity and stability is a promising strategy for fabricating efficient electrocatalysts for the oxygen evolution reaction (OER). In this study, trimetallic nitrogen-incorporated CoNiFe (N-CoNiFe) was produced to solve the low OER efficiency using a facile co-precipitation method in the presence of ethanolamine (EA) ligands. A series of CoNiFe catalysts at different EA concentrations were also investigated to determine the effects of the ligand in the co-precipitation of a trimetallic system. The introduction of an optimized EA concentration (20 mM) improved the electrocatalytic performance of N-CoNiFe dramatically, with an overpotential of 318 mV at 10 mA cm-2 in 1.0 M KOH and a Tafel slope of 72.2 mV dec-1. In addition, N-CoNiFe shows high durability in the OER process with little change in the overpotential (ca. 16.0 mV) at 10 mA cm-2 after 2000 cycles, which was smaller than that for commercial Ir/C (38.0 mV).

3.
RSC Adv ; 11(21): 12520-12530, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35423825

RESUMO

This paper reports the facile and scalable synthesis of hybrid N-doped carbon quantum dots/multi-walled carbon nanotube (CD/CNT) composites, which are efficient alternative catalysts for the oxygen reduction reaction (ORR) in fuel cells. The N-doped CDs for large-scale production were obtained within 5 minutes via a one-step polyol process using ethylenediamine (ED) in the presence of hydrogen peroxide as an oxidizing agent. For comparison, different CDs were also prepared using ethylene glycol (EG) and ethanolamine (EA) in the same manner. Physicochemical characterization suggested the successful formation of a CD(ED)/CNT hybrid without individual CD(ED)s and CNTs. The N-doped CD(ED)/CNT catalyst exhibited excellent electrocatalytic activity in an alkaline solution compared to other composites (CD(EG)/CNT and CD(EA)/CNT). The Tafel slope (-60.9 mV dec-1) and durability (∼9.1% decay over 10 h) for CD(ED)/CNT were superior to high-performance Pt/C catalysts. The electrochemical double-layer capacitance on the CD(ED)/CNT hybrid showed apparent improvement of the active surface area because of N-doping and highly decorated CDs on the CNT wall. These results provide an innovative approach for the potential application of all carbon hybrid structures in electrocatalysis.

4.
RSC Adv ; 11(46): 28775-28784, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35478580

RESUMO

This paper reports the facile synthesis and characterization of carbon supported Pd nanowires with low Ru contents (nRuPd/C). An anti-galvanic replacement reaction involving the reduction of Ru(iii) ions by nanoporous Pd nanowires to form nRuPd alloy nanowires was observed. A series of nRuPd/C materials with various Ru/Pd ratios were prepared by the spontaneous deposition of a Ru cluster on a Pd nanowire core using different Ru precursor concentrations (RuCl3 = 0.5, 1.0, 5.0 mM). The successful formation of low content Ru-incorporated Pd nanowires without individual Ru clusters were confirmed using physicochemical characterization. The electrocatalytic activity of the nRuPd/C for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) in alkaline media was measured by RDE polarization experiments. The electrocatalytic activity varied greatly depending on the Ru content on the Pd nanowires. Among the catalysts, the prepared Pd nanowires incorporated with a very small amount of Ru (ca. 1.4 wt%) exhibited excellent electrocatalytic activity toward the ORR and HER: positive ORR/HER onset and E 1/2 potentials, higher n value, and lower Tafel slope.

5.
J Org Chem ; 85(20): 12882-12900, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32969218

RESUMO

Knowledge about factors that govern chemoselectivity is pivotal to the design of reactions that are utilized to produce complex organic substances. In the current study, single-electron transfer (SET)-promoted photoaddition reactions of fullerene C60 with both trimethylsilyl and various alkyl group-containing glycinates and ethyl N-alkyl-N-((trimethylsilyl)methyl)glycinates were explored to evaluate how the nature of N-alkyl substituents of glycinate substrates and reaction conditions govern the chemoselectivity of reaction pathways followed. The results showed that photoreactions of C60 with glycinates, performed in deoxygenated conditions, produced aminomethyl-1,2-dihydrofullerenes efficiently through a pathway involving the addition of α-amino radical intermediates that are generated by sequential SET-solvent-assisted desilylation of glycinate substrates to C60. Under oxygenated conditions, photoreactions of glycinate substrates, except N-benzyl-substituted analogues, did not take place efficiently owing to quenching of 3C60* by oxygen. Interestingly, N-benzyl-substituted glycinates did react under these conditions to form fulleropyrrolidines through a pathway involving 1,3-dipolar cycloaddition of in situ formed azomethine ylides to C60. The ylide intermediates were formed by regioselective H-atom transfer from glycinates by singlet oxygen. Furthermore, methylene blue (MB)-photosensitized reactions of C60 with glycinates under oxygenated conditions took place efficiently to produce fulleropyrrolidines independent of the nature of N-alkyl substituents of glycinates.

6.
Phys Chem Chem Phys ; 22(6): 3370-3378, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31976990

RESUMO

The molecular geometry effects of ortho, meta, and para-terphenyl based donor-π-acceptor (D-π-A) dyads on intramolecular charge transfer (ICT) were studied to investigate structure-ICT relationships. Terphenyl based D-π-A dyads were prepared by two-step palladium catalyzed, Suzuki-Miyaura coupling reactions, in which triphenylamine (TPA) was used as the electron donor and 1,2-diphenyl-benzimidazole (IMI) as the electron acceptor. The photophysical and electrochemical properties of terphenyl backbone-based ortho (O), meta (M), and para (P) dyads were compared. In steady state absorption spectra, a red-shift of CT band was observed in the order O < M < P, which was attributed to terphenyl isomer conjugation effects and agreed well with density functional theory (DFT) based calculations. In particular, the emission spectra of the three terphenyl D-π-A dyads produced showed similar emission maxima at ∼475 nm and a bathochromic shift property was observed in order to increase the solvent polarity, indicating the ICT process. From Lippert-Mataga plots, excited-state dipole moment changes (Δµ) were estimated to be 31.5 Debye (D) for O, 62.9 D for M, and 51.5 D for P. For M isomer, a large Δµ and the markedly reduced quantum yield was shown, as well as photo-induced electron transfer (PET) was expected in the excited state, but no radical species were observed by femtosecond transient absorption (TA) measurements. Based on experimental results, we conclude that all three terphenyl based D-π-A dyads, including non-conjugated ortho- and meta-terphenyl dyads, exhibit partial charge transfer rather than unit-electron transfer.

7.
J Org Chem ; 84(3): 1407-1420, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624063

RESUMO

The photochemical reactions of C60 with N-(trimethylsilyl)methyl substituted and N-alkyl/aryl substituted α-aminonitriles were explored to evaluate the scope and reaction efficiency depending on the structural nature of amine substrates. The results showed that photoreactions of C60 with trimethylsilyl group containing N-alkyl amines produced predominantly both trimethylsilyl and cyano group containing trans-pyrrolidine ring fused fulleropyrrolidines in a chemo- and stereoselective manner. Interestingly, photoreactions of C60 with N-branched alkyl substituted amines led to exclusive formation of non-silyl containing cycloadducts. In contrast to those of N-alkyl substituted α-aminonitriles, photoreactions of N-(trimethylsilyl)methyl and N-aryl substituted α-aminonitriles gave rise to the formation of both trans- and cis-isomeric fulleropyrrolidines with an inefficient and non-stereoselective manner. The feasible mechanistic pathways leading to generation of fulleropyrrolidines are 1,3-dipolar cycloaddition of the azomethine ylides, generated by either a single electron transfer (SET) (under N2-purged conditions) or H atom abstraction (under O2-purged conditions) process, to fullerene C60. The stereoselectivities of photoproducts depending on the nature of amines are likely to be associated with conformational stabilities of in situ generated azoemthine ylides.

8.
Langmuir ; 30(12): 3579-88, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24617746

RESUMO

This paper reports the facile synthesis and characterization of spongelike nanoporous Pd (snPd) and Pd/Au (snPd/Au) prepared by a tailored galvanic replacement reaction (GRR). Initially, a large amount of Co particles as sacrificial templates was electrodeposited onto the glassy carbon surface using a cyclic voltammetric method. This is the key step to the subsequent fabrication of the snPd/Au (or snPd) architectures by a surface replacement reaction. Using Co films as sacrificial templates, snPd/Au catalysts were prepared through a two-step GRR technique. In the first step, the Pd metal precursor (at different concentrations), K2PdCl4, reacted spontaneously to the formed Co frames through the GRR, resulting in a snPd series. snPd/Au was then prepared via the second GRR between snPd (prepared with 27.5 mM Pd precursor) and Au precursor (10 mM HAuCl4). The morphology and surface area of the prepared snPd series and snPd/Au were characterized using spectroscopic and electrochemical methods. Rotating disk electrode (RDE) experiments for oxygen reduction in 0.1 M NaOH showed that the snPd/Au has higher catalytic activity than snPd and the commercial Pd-20/C and Pt-20/C catalysts. Rotating ring-disk electrode (RRDE) experiments reconfirmed that four electrons were involved in the electrocatalytic reduction of oxygen at the snPd/Au. Furthermore, RDE voltammetry for the H2O2 oxidation/reduction was used to monitor the catalytic activity of snPd/Au. The amperometric i-t curves of the snPd/Au catalyst for a H2O2 electrochemical reaction revealed the possibility of applications as a H2O2 oxidation/reduction sensor with high sensitivity (0.98 mA mM(-1) cm(-2) (r = 0.9997) for H2O2 oxidation and -0.95 mA mM(-1) cm(-2) (r = 0.9997) for H2O2 reduction), low detection limit (1.0 µM), and a rapid response (<∼1.5 s).


Assuntos
Técnicas Eletroquímicas , Ouro/química , Nanopartículas Metálicas/química , Paládio/química , Catálise , Eletrodos , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
9.
Anal Chim Acta ; 819: 94-101, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24636416

RESUMO

We report a new nonenzymatic amperometric detection of ascorbic acid (AA) using a glassy carbon (GC) disk electrode modified with hollow gold/ruthenium (hAu-Ru) nanoshells, which exhibited decent sensing characteristics. The hAu-Ru nanoshells were prepared by the incorporation of Ru on hollow gold (hAu) nanoshells from Co nanoparticle templates, which enabled AA selectivity against glucose without aid of enzyme or membrane. The structure and electrocatalytic activities of the hAu-Ru catalysts were characterized by spectroscopic and electrochemical techniques. The hAu-Ru loaded on GC electrode (hAu-Ru/GC) showed sensitivity of 426 µA mM(-1) cm(-2) (normalized to the GC disk area) for the linear dynamic range of <5 µM to 2 mM AA at physiological pH. The response time and detection limit were 1.6 s and 2.2 µM, respectively. Furthermore, the hAu-Ru/GC electrode displayed remarkable selectivity for ascorbic acid over all potential biological interferents, including glucose, uric acid (UA), dopamine (DA), 4-acetamidophenol (AP), and nicotinamide adenine dinucleotide (NADH), which could be especially good for biological sensing.


Assuntos
Ácido Ascórbico/análise , Ouro/química , Nanoconchas/química , Rutênio/química , Carbono/química , Técnicas Eletroquímicas , Eletrodos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
10.
Phys Chem Chem Phys ; 15(37): 15365-70, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23928810

RESUMO

Nanocomposites of iridium nanoparticles (Ir NPs), supported on graphene nanosheets, are synthesized and their electrocatalytic acitivities in the oxygen reduction reaction (ORR) are studied depending on their Ir oxidation state. Graphene functionalized with poly(vinyl pyrrolidone) (pRGO) is a suitable support for Ir NPs, producing well-monodispersed Ir NPs anchored strongly on the pRGO surface (Ir NP/pRGO) with a very high density. This was confirmed by scanning electron microscopy and transmission electron microscopy. The ORR activity of the Ir NP/pRGO nanocomposites in 0.5 M H2SO4 solution was observed to be dependent on the oxidation state of the immobilized Ir NPs. In fact, the nanocomposite composed of Ir(0) metal NPs, rather than Ir oxide (IrOx) NPs, exhibits higher ORR activity, such as more positive onset potential, higher and flatter limiting current density, a greater n value, and a sharper curve shape in the rotating disk electrode voltammetry experiments. Higher ORR activity of Ir is ascribed to the stronger adsorption of oxygen on the surface of Ir compared to IrOx. The practical stability of the Ir NP/pRGO composite was also confirmed under O2 saturated/acidic conditions.

11.
Analyst ; 138(18): 5258-64, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23856763

RESUMO

In this study, a dual microsensing electrochemical probe for measuring oxygen (O2) and pH levels was developed based on a dual recessed Pt disk electrode (each disk diameter, 10 µm) with the use of two Ag/AgCl reference electrodes (one for each disk of the dual electrode). One of the recessed Pt disks of the dual electrode was electrodeposited with a porous Pt layer and then coated with a hydrophobic photocured polymer (partially fluorinated epoxy diacrylate, abbreviated as FED). The Pt-FED covered disk was used as an amperometric O2 sensor and exhibited a linear current increase that was proportional to the PO2 level (partial O2 pressure) with high sensitivity (168.4 ± 33.8 pA mmHg(-1)) and fast response time (t90% = 0.17 ± 0.05 s). The other recessed Pt disk was electrodeposited with an IrO2 layer. The potential between the IrO2 deposited electrode and the Ag/AgCl reference electrode produced a reliable Nernstian response to pH changes (58.3 ± 1.5 mV pH(-1)) with a t90% of 0.43 ± 0.09 s. The sensor displayed high stability in the in vitro organ tissue measurements for at least 2.5 h. By using the developed dual O2/pH microsensor as a probe tip for scanning electrochemical microscopy, the two-dimensional images of the location-dependent PO2 and pH levels were simultaneously acquired and could be used to assess the surface of a rat kidney tissue slice. When compared to the corresponding medullary levels, both PO2 and pH were observed to be higher in the cortex area, while the modest level gradient was observed near the cortex-medulla border. This finding suggests that there is a direct relationship between the tissue O2 supply/consumption and pH, which is mainly determined by metabolite, such as CO2, production.


Assuntos
Rim/química , Rim/metabolismo , Microtecnologia/instrumentação , Imagem Molecular/métodos , Oxigênio/metabolismo , Animais , Eletroquímica , Concentração de Íons de Hidrogênio , Masculino , Polímeros/química , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Fatores de Tempo
12.
Phys Chem Chem Phys ; 15(27): 11461-7, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23748629

RESUMO

A series of hollow Pd nanoshells are prepared by employing Co nanoparticles as sacrificial templates with different concentrations of a Pd precursor (1, 6, 12, 20, and 40 mM K2PdCl4), denoted hPd-X (X: concentration of K2PdCl4 in mM unit). The synthesized hPd series are tested as a cathodic electrocatalyst for oxygen reduction reaction (ORR) in alkaline solution. The morphology and surface area of the hPd catalysts are characterized using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and cyclic voltammetry (CV). Rotating disk electrode (RDE) voltammetric studies show that the hPd-20 (prepared using 20 mM K2PdCl4) has the highest ORR activity among all the hPd series, while being comparable to commercial Pd and Pt catalysts (E-TEK). The more facilitated ORR at hPd-20 is presumably induced by the enhanced Pd surface area and efficiently high porosity of Pd nanoshells.


Assuntos
Nanopartículas Metálicas/química , Oxigênio/química , Paládio/química , Hidróxido de Sódio/química , Catálise , Cobalto/química , Técnicas Eletroquímicas , Oxirredução , Tamanho da Partícula , Porosidade , Soluções , Propriedades de Superfície
13.
Anal Chem ; 84(21): 9485-91, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23016959

RESUMO

We demonstrate highly efficient electocatalytic activities of single crystalline RuO(2) nanorods grown on carbon fiber (CF), i.e., RuO(2) nanorod-CF hybrid microelectrode, prepared by a simple thermal annealing process from the Ru(OH)(3) precursor at 300 °C. The general electrochemical activity of a RuO(2) nanorod-CF microelectrode represents faster electron transfer for the [Fe(CN)(6)](3-/4-) couple than that of the bare CF microelectrode which are confirmed from the cyclic voltammetry (CV) measurement. Also, the amperometric response for the H(2)O(2) oxidation is remarkably facilitated at the RuO(2) nanorod-CF microelectrode by not only the enlarged surface area but the high electrocatalytic activity of the RuO(2) nanorod material itself. Furthermore, a single microelectrode of RuO(2) nanorod-CF exhibits the superior tolerance to Cl(-) ion poisoning unlike Pt-based electrocatalysts, indicating the promising sensor candidate in physiological conditions.

14.
Chem Commun (Camb) ; 48(71): 8940-2, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22847616

RESUMO

Gold nanoparticles (AuNPs) were assembled with high density onto multi-walled carbon nanotubes, which were functionalized with zwitterionic poly(imidazoliumsulfonate). The AuNP/zwitterionic CNT hybrids exhibited decent electrocatalytic activity in oxygen reduction reaction as the AuNP-based catalysts.

15.
Anal Chem ; 84(8): 3827-32, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22455500

RESUMO

Applying nanoscale device fabrications toward biomolecules, ultra sensitive, selective, robust, and reliable chemical or biological microsensors have been one of the most fascinating research directions in our life science. Here we introduce hierarchically driven iridium dioxide (IrO(2)) nanowires directly on a platinum (Pt) microwire, which allows a simple fabrication of the amperometric sensor and shows a favorable electronic property desired for sensing of hydrogen peroxide (H(2)O(2)) and dihydronicotinamide adenine dinucleotide (NADH) without the aid of enzymes. This rational engineering of a nanoscale architecture based on the direct formation of the hierarchical 1-dimensional (1-D) nanostructures on an electrode can offer a useful platform for high-performance electrochemical biosensors, enabling the efficient, ultrasensitive detection of biologically important molecules.


Assuntos
Técnicas Biossensoriais , Eletroquímica , Peróxido de Hidrogênio/análise , Irídio/química , NAD/análise , Nanofios/química , Catálise , Limite de Detecção , Platina/química
16.
Phys Chem Chem Phys ; 14(11): 3974-9, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22322646

RESUMO

The electrocatalytic activities of nanoporous palladium (npPd) and platinum (npPt) for oxygen reduction reaction (ORR) under alkaline conditions and hydrogen peroxide electrochemical reactions under neutral conditions were examined. npPd and npPt were prepared by the electrochemical deposition of each metal from the corresponding metal precursor in the presence of reverse micelles of Triton X-100, directing highly porous microstructures. The nanoporous catalysts showed excellent electrocatalytic activity for both the ORR and hydrogen peroxide electrochemical oxidation/reduction due to the increased active surface area. In particular, the npPd exhibited superior ORR activity (i.e., more positive onset and half-wave potentials, higher current density and greater number of electrons transferred) despite the smaller roughness factor than the npPt and commercial Pt. The catalytic activity for the hydrogen peroxide electrochemical reactions was also higher while using npPd (i.e., faster electrode reaction kinetics, increased current densities, etc.) compared to npPt. The higher catalytic activity of npPd than that of npPt suggests an advantage of the unique npPd structure, composed of nano- as well as micro-porosity, in facilitating mass transport through the porous metal layer. The npPd exhibited amperometric current responses, induced by the oxidation as well as reduction of hydrogen peroxide, linearly proportional to the hydrogen peroxide concentration with a rapid response time (<~2 s), high sensitivity, and low detection limit (<1.8 µM).


Assuntos
Peróxido de Hidrogênio/química , Nanoestruturas/ultraestrutura , Paládio/química , Platina/química , Catálise , Eletroquímica , Nanoestruturas/química , Oxirredução , Porosidade
17.
Chem Asian J ; 6(8): 2016-21, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21688395

RESUMO

A series of palladium nanoparticles supported on carbon nanotubes (CNTs), which were functionalized covalently with imidazolium polymer salts with different anions, Pd/polyIL(X)-CNTs (IL=ionic liquid; X=Cl, Br, I, ClO(4), BF(4), PF(6)), were prepared to investigate the influence of imidazolim salt anions on electrocatalytic activity in the oxygen reduction reaction (ORR). The anions of the imidazolium moiety significantly impacted on the ORR kinetics in a 0.1 M solution of HClO(4). The electronically active surface area results are in good agreement with the order of the ORR kinetic activity of the supported Pd/polyIL(X)-CNTs (X: Cl>ClO(4)>BF(4)>Br≈PF(6)≫I). In contrast, owing to the facile anion exchange of halide anions with hydroxide anions, anion-dependent catalytic activity has not been observed in 0.1 M NaOH. Iterative ORR experiments in acid-base solutions demonstrated anion exchange on the electrode. These results indicate that subtly varied structures of the IL moiety profoundly influence the performance of IL-CNT hybrid materials and molecular-level control of interfacial interactions between the support material, catalysts, and electrolytes is important in the design of supported metal nanoparticle catalysts for fuel cells.

18.
Anal Chem ; 81(20): 8571-6, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19775121

RESUMO

This paper reports an amperometric nitric oxide (NO) microsensor based on a cone-shaped nanopore-platinized Pt working electrode. The senor was fabricated using the following procedure: (1) a parent nanodisk electrode was prepared by polishing an etched Pt wire (radius = 12.5 microm; dimension of etched tip end point <10 nm) embedded in a glass capillary, (2) the nanodisk Pt was further etched to produce a nanopore (pore opening radius <1 microm; pore depth approximately 30 microm), (3) the Pt base surface in the nanopore electrode was platinized electrochemically to improve the sensor sensitivity, and (4) silanization and further modification with the electropolymerized polymeric film [poly(5-amino-1-naphthol)] on the nanopore-platinized Pt electrode were carried out to obtain the sensor selectivity to NO. The analytical performance of the sensor was characterized. For example, a sensor with a pore opening radius of 797 nm exhibited a decent linear dynamic range (at least for 0.2-1.8 microM), detection limit of < approximately 32 nM, response time (t(90%)) of < approximately 5 s, and sensitivity of 6.5 +/- 0.02 pA/nM. This sensor was used successfully as a NO-selective probe tip in scanning electrochemical microscopy (SECM) to obtain a two-dimensional image of the local NO concentrations for an inlaid NO-emitting microdisk film (radius = 12.5 microm) on a glass substrate.


Assuntos
Imagem Molecular/métodos , Nanotecnologia , Óxido Nítrico/análise , Platina/química , Eletroquímica , Eletrodos , Microscopia Eletrônica de Varredura , Porosidade
19.
Anal Chem ; 79(10): 3568-74, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17411008

RESUMO

Glass nanopore-based all-solid-state ion-selective electrodes (ISEs) have been developed to probe the distribution of ionic species at micro- or submicrometer-length scales, e.g., mapping of ion flux through micrometer-sized pores. The all-solid-state ISE was fabricated by sealing a conically etched platinum wire (d = 25-microm; radius of etched tip <10 nm) into a soda lime glass capillary. A Pt disk was exposed by gentle polishing the glass and the disk etched to form a conical pore of submicrometer dimension (radius < approximately 500 nm; depth < approximately 30 microm). Ag was electroplated on the Pt electrode in the pore and gently chloridated to obtain a AgCl/Ag layer within the pore. The AgCl/Ag layer-coated ISE was used as a highly selective Cl- probe in scanning electrochemical microscope experiments to map the ion flux through a micropore. The same ISE was also used as the base transducer of the neutral carrier-doped solvent polymeric membrane. The optimized polymer membranes used for the glass nanopore-based all-solid-state ISE require a higher ratio of plasticizer/polymer (9/1) compared to those for conventional ISE (2/1). An ISE based on deposition of an IrO2 layer at the base of a glass nanopore electrode exhibited a highly sensitive response (79.7 +/- 2.3 mV/pH) to variations in pH and could be used for approximately 3 weeks.

20.
Talanta ; 71(5): 1986-92, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-19071552

RESUMO

The synthesis and potentiometric evaluation of new 1,3,5-tris(thiazolylcarbethoxy)-2,4,6-trimethylbenzene (3), 1,3,5-tris(thiazolylhydroxy)-2,4,6-trimethylbenzene (4), 1,3,5-tris(thiazolylmethyl)-2,4,6-trimethylbenzene (5), and 1,3,5-tris(thiazolylphenyl)-2,4,6-trimethylbenzene (6), toward mono and divalent cations under various pH conditions are outlined. The ion-selective properties of the newly synthesized compounds were studied by measuring the potentiometric responses of the 3-, 4-, 5-, and 6-based membrane electrodes to alkali metal, alkaline earth metal, ammonium, and transition metal ions, under various pH conditions. The 3-based electrode exhibited a Nernstian response to ammonium and potassium under alkaline pH conditions, while the other three electrodes showed a poor potentiometric performance. All electrodes showed substantial responses to silver ion under acidic condition, but there was almost nil response to other transition metal ions (Fe(2+), Co(2+), Zn(2+), Ni(2+), Pb(2+), Cd(2+), Cu(2+) and Hg(2+)). The 3- and 5-based electrodes resulted in near Nernstian responses (51.3mV and 59.5mV/pAg(+), respectively) with low detection limits (approximately 100ppt), while the 4- and 6-based ones showed sub-Nernstian below 40mV/pAg(+). The results were interpreted with semi-empirically modeled structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA