Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
2.
Hepatol Commun ; 7(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37782459

RESUMO

BACKGROUND: NAFLD caused by abnormalities in hepatic lipid metabolism is associated with an increased risk of developing HCC. The molecular mechanisms underlying the progression of NAFLD-related HCC are not fully understood. We investigated the molecular mechanism and role of KDM6B downregulation in NAFLD-related HCC after the KDM6B gene was identified using microarray analysis as commonly downregulated in mouse NAFLD-related HCC and human nonhepatitis B and nonhepatitis C viral-HCC. METHODS: The 5-hydroxymethylcytosine levels of KDM6B in HCC cells were determined using glycosylated hydroxymethyl-sensitive PCR. Microarray and chromatin immunoprecipitation analyses using KDM6B-knockout (KO) cells were used to identify KDM6B target genes. Lipotoxicity was assessed using a palmitate-treated cell proliferation assay. Immunohistochemistry was used to evaluate KDM6B expression in human HCC tissues. RESULTS: KDM6B expression levels in HCC cells correlated with the 5-hydroxymethylcytosine levels in the KDM6B gene body region. Gene set enrichment analysis revealed that the lipid metabolism pathway was suppressed in KDM6B-KO cells. KDM6B-KO cells acquired resistance to lipotoxicity (p < 0.01) and downregulated the expression of G0S2, an adipose triglyceride lipase/patatin like phospholipase domain containing 2 (ATGL/PNPLA2) inhibitor, through increased histone H3 lysine-27 trimethylation levels. G0S2 knockdown in KDM6B-expressed HCC cells conferred lipotoxicity resistance, whereas ATGL/PNPLA2 inhibition in the KDM6B-KO cells reduced these effects. Immunohistochemistry revealed that KDM6B expression was decreased in human NAFLD-related HCC tissues (p < 0.001), which was significantly associated with decreased G0S2 expression (p = 0.032). CONCLUSIONS: KDM6B-disrupted HCC acquires resistance to lipotoxicity via ATGL/PNPLA2 activation caused by epigenetic downregulation of G0S2 expression. Reduced KDM6B and G0S2 expression levels are common in NAFLD-related HCC. Targeting the KDM6B-G0S2-ATGL/PNPLA2 pathway may be a useful therapeutic strategy for NAFLD-related HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Lipase/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética
3.
Sci Rep ; 13(1): 9449, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296228

RESUMO

Hepatocellular carcinoma (HCC) imposes a huge global burden, arising from various etiological factors such as hepatitis virus infection and metabolic syndrome. While prophylactic vaccination and antiviral treatment have decreased the incidence of viral HCC, the growing prevalence of metabolic syndrome has led to an increase in non-viral HCC. To identify genes downregulated and specifically associated with unfavorable outcome in non-viral HCC cases, screening analysis was conducted using publically available transcriptome data. Among top 500 genes meeting the criteria, which were involved in lipid metabolism and mitochondrial function, a serine transporter located on inner mitochondrial membrane SFXN1 was highlighted. SFXN1 protein expression was significantly reduced in 33 of 105 HCC tissue samples, and correlated to recurrence-free and overall survival only in non-viral HCC. Human HCC cells with SFXN1 knockout (KO) displayed higher cell viability, lower fat intake and diminished reactive oxygen species (ROS) production in response to palmitate administration. In a subcutaneous transplantation mouse model, high-fat diet feeding attenuated tumorigenic potential in the control cells, but not in the SFXN1-KO cells. In summary, loss of SFXN1 expression suppresses lipid accumulation and ROS generation, preventing toxic effects from fat overload in non-viral HCC, and predicts clinical outcome of non-viral HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Síndrome Metabólica , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Síndrome Metabólica/complicações , Espécies Reativas de Oxigênio , Antivirais/uso terapêutico
4.
J Gastroenterol ; 58(6): 540-553, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36859628

RESUMO

BACKGROUND: Recent advances in immune checkpoint blockade (ICB) have improved patient prognosis in mismatch repair-deficient and microsatellite instability-high colorectal cancer (dMMR/MSI-H CRC); however, PD-1 blockade has faced a challenge in early progressive disease. We aimed to understand the early event in ICB resistance using an in vivo model. METHODS: We subcutaneously transplanted the MC38 colon cancer cells into C57BL/6 mice, intraperitoneally injected anti-PD-1 antibody and then isolated ICB-resistant subclones from the recurrent tumors. RESULTS: Comparative gene expression analysis discovered seven genes significantly downregulated in the ICB-resistant cells. Tumorigenicity assay of the MC38 cells knocked out each of the seven candidate genes into C57BL/6 mice treated with anti-PD-1 antibody and bioinformatics analysis of the relationship between the expression of the seven candidate genes and the outcome of cancer patients receiving immunotherapy identified Rtp4, an interferon-stimulated gene and a chaperon protein of G protein-coupled receptors, as a gene involved in ICB resistance. Immunohistochemical analysis of transplanted tumor tissues demonstrated that anti-PD-1 antibody failed to recruit T lymphocytes in the Rtp4-KO MC38 cells. Mouse and human RTP4 expression could be silenced via histone H3 lysine 9 (H3K9) trimethylation, and public transcriptome data indicated the high expression level of RTP4 in most but not all of dMMR/MSI-H CRC. CONCLUSIONS: We clarified that RTP4 could be silenced by histone H3K9 methylation as the early event of ICB resistance. RTP4 expression could be a promising biomarker for predicting ICB response, and the combination of epigenetic drugs and immune checkpoint inhibitors might exhibit synergistic effects on dMMR/MSI-H CRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Instabilidade de Microssatélites , Chaperonas Moleculares/genética , Chaperonas Moleculares/uso terapêutico
5.
Cancer Sci ; 114(2): 463-476, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36271761

RESUMO

Although histone H3K4 methyltransferase SETD1A is overexpressed in various cancer types, the molecular mechanism underlying its overexpression and its target genes in pancreatic ductal adenocarcinoma (PDAC) remain unclarified. We conducted immunohistochemical staining for SETD1A in 105 human PDAC specimens to assess the relationship between SETD1A overexpression and clinicopathological features. The function and target genes of SETD1A were investigated using human pancreatic cancer cell lines. SETD1A expression was upregulated in 51.4% of patients with PDAC and was an independent prognostic factor associated with shorter disease-free survival after resection (p < 0.05). Knockdown and overexpression of SETD1A showed that SETD1A plays a crucial role in increasing the proliferation and motility of PDAC cells. SETD1A overexpression increased tumorigenicity. RNA sequencing of SETD1A-knockdown cells revealed downregulation of RUVBL1, an oncogenic protein ATP-dependent DNA helicase gene. ChIP analysis revealed that SETD1A binds to the RUVBL1 promoter region, resulting in increased H3K4me3 levels. Knockdown of RUVBL1 showed inhibition of cell proliferation, migration, and invasion of PDAC cells, which are similar biological effects to SETD1A knockdown. High expression of both SETD1A and RUVBL1 was an independent prognostic factor not only for disease-free survival but also for overall survival (p < 0.05). In conclusion, we identified RUVBL1 as a novel downstream target gene of the SETD1A-H3K4me3 pathway. Co-expression of SETD1A and RUVBL1 is an important factor for predicting the prognosis of patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Relevância Clínica , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Prognóstico , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Pancreáticas
6.
Sci Rep ; 12(1): 10466, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773436

RESUMO

Immune checkpoint blockade (ICB) treatment improves the prognosis of several types of solid tumors, however, responsiveness to ICB therapy remains low in pancreatic ductal adenocarcinoma (PDACs), which has a rich tumor microenvironment (TME). The TME is composed of various stromal cells, including cancer-associated fibroblasts (CAFs), which contribute to the establishment of an immunosuppressive microenvironment. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an innate immune pathway that results in the upregulation of immune cell recruiting-cytokines and anti-tumor efficacy. In this study, we aimed to investigate the impact of cGAS-STING expression and the presence of CAFs upon immune cell infiltration in PDACs. cGAS and STING co-expressing PDAC cases showed favorable survival, with many cytotoxic CD8 + T cell infiltrations from the stromal component adjacent to the cancer cells toward cancer cells, but not in cGAS-STING signaling defected PDAC cases. The signatures of tumor-restrain CAFs were expressed in tumors with cGAS-STING signaling. Finally, transwell co-culture experiments demonstrated that immune cell infiltration was impeded by the presence of CAFs, but not by activation of cGAS-STING signaling. In conclusion, pro-infiltration signals, such as cGAS-STING, and characterization of CAFs are crucial in defeating CAF barricades and encouraging immune cell infiltration in PDACs.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Proteínas de Membrana , Nucleotidiltransferases , Neoplasias Pancreáticas , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Humanos , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Microambiente Tumoral
7.
Int J Clin Oncol ; 27(7): 1101-1109, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35633441

RESUMO

Hepatocellular carcinoma (HCC) is a complex heterogeneous disease with high morbidity and mortality. Recent progress in molecular targeted drugs including multikinase inhibitors and immune checkpoint inhibitors has demonstrated substantial survival improvement in patients with advanced HCC, but it remains as a challenging issue to discover surrogate markers for precisely distinguishing responders and non-responders. Genome-based medicine has changed cancer treatment from empirical use of cytotoxic agents to theoretical use of molecular targeted drugs in various types of cancer, while not in HCC due to lack of druggable targets. Integrated genomic and transcriptomic analysis reveal that HCC is divided into three major subtypes, proliferative, CTNNB1-mutated and metabolic disease-associated, with distinctive molecular and immunological features, and an increasing number of studies provide evidence for the close correlation between the subtype and the response to molecular targeted drugs using both of clinical data and preclinical models. Dozens of immunocompetent mouse models, such as hydrodynamic tail vain injection models and implantable syngeneic models, reflect molecular characteristics and tumor immune microenvironment of the subtypes, and help us to evaluate the efficacy of single and combination therapies and understand the molecular mechanisms underlying vulnerability and resistance to them. Thus, the consensus classification and relevant preclinical models could accelerate the establishment of predictive biomarkers and the development of subtype-specific therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Terapia de Alvo Molecular , Microambiente Tumoral/genética
8.
Gastric Cancer ; 25(1): 83-95, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387762

RESUMO

BACKGROUND: There is a need for a model of diffuse-type gastric cancer that captures the features of the disease, facilitates the study of its mechanisms, and aids the development of potential therapies. One such model may be Cdh1 and Trp53 double conditional knockout (DCKO) mice, which have histopathological features similar to those of human diffuse-type gastric cancer. However, a genomic profile of this mouse model has yet to be completed. METHODS: Whole-genome sequences of tumors from eight DCKO mice were analyzed and their molecular features were compared with those of human gastric adenocarcinoma. RESULTS: DCKO mice gastric cancers harbored single nucleotide variations and indel patterns comparable to those of human genomically stable gastric cancers, whereas their copy number variation fraction and ploidy were more similar to human chromosomal instability gastric cancers (perhaps due to Trp53 knockout). Copy number variations dominated changes in cancer-related genes in DCKO mice, with typical high-level amplifications observed for oncogenic drivers, e.g., Myc, Ccnd1, and Cdks, as well as gastrointestinal transcription factors, e.g., Gata4, Foxa1, and Sox9. Interestingly, frequent alterations in gastrointestinal transcription factors in DCKO mice indicated their potential role in tumorigenesis. Furthermore, mouse gastric cancer had a reproducible but smaller number of mutational signatures than human gastric cancer, including the potentially acid-related signature 17, indicating shared tumorigenic etiologies in humans and mice. CONCLUSIONS: Cdh1/Trp53 DCKO mice have similar genomic features to those found in human gastric cancer; hence, this is a suitable model for further studies of diffuse-type gastric cancer mechanisms and therapies.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Genômica , Humanos , Camundongos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
9.
Cancer Sci ; 112(11): 4570-4579, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34459070

RESUMO

Although the inhibition of acid ceramidase (AC) is known to induce antitumor effects in various cancers, there are few reports in pancreatic cancer, and the underlying mechanisms remain unclear. Moreover, there is currently no safe administration method of AC inhibitor. Here the effects of gene therapy using siRNA and shRNA for AC inhibition with its mechanisms for pancreatic cancer were investigated. The inhibition of AC by siRNA and shRNA using an adeno-associated virus 8 (AAV8) vector had antiproliferative effects by inducing apoptosis in pancreatic cancer cells and xenograft mouse model. Acid ceramidase inhibition elicits mitochondrial dysfunction, reactive oxygen species accumulation, and manganese superoxide dismutase suppression, resulting in apoptosis of pancreatic cancer cells accompanied by ceramide accumulation. These results elucidated the mechanisms underlying the antitumor effect of AC inhibition in pancreatic cancer cells and suggest the potential of the AAV8 vector to inhibit AC as a therapeutic strategy.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Terapia Genética/métodos , Doenças Mitocondriais/etiologia , Estresse Oxidativo , Neoplasias Pancreáticas/terapia , RNA Interferente Pequeno/uso terapêutico , Ceramidase Ácida/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Ceramidas/metabolismo , Dependovirus , Vetores Genéticos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 11(1): 16732, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429454

RESUMO

Comprehensive analysis of clinical samples has recently identified molecular and immunological classification of hepatocellular carcinoma (HCC), and the CTNNB1 (ß-catenin)-mutated subtype exhibits distinctive characteristics of immunosuppressive tumor microenvironment. For clarifying the molecular mechanisms, we first established human and mouse HCC cells with exon 3 skipping of ß-catenin, which promoted nuclear translocation and activated the Wnt/ß-catenin signaling pathway, by using newly developed multiplex CRISPR/Cas9-based genome engineering system. Gene set enrichment analysis indicated downregulation of immune-associated gene sets in the HCC cells with activated ß-catenin signaling. Comparative analysis of gene expression profiles between HCC cells harboring wild-type and exon 3 skipping ß-catenin elucidated that the expression levels of four cytokines were commonly decreased in human and mouse ß-catenin-mutated HCC cells. Public exome and transcriptome data of 373 human HCC samples showed significant downregulation of two candidate cytokine genes, CCL20 and CXCL2, in HCC tumors with ß-catenin hotspot mutations. T cell killing assays and immunohistochemical analysis of grafted tumor tissues demonstrated that the mouse Ctnnb1Δex3 HCC cells evaded immunosurveillance. Taken together, this study discovered that cytokine controlled by ß-catenin signaling activation could contribute to immune evasion, and provided novel insights into cancer immunotherapy for the ß-catenin-mutated HCC subtype.


Assuntos
Carcinoma Hepatocelular/metabolismo , Éxons , Evasão da Resposta Imune , Neoplasias Hepáticas/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Mutação , beta Catenina/genética
11.
J Hepatobiliary Pancreat Sci ; 28(1): 62-75, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33259135

RESUMO

The development of hepatocellular carcinoma (HCC) is a multistep process with a complex interaction of various genetic backgrounds and the tumor microenvironment. In addition to the development of rational approaches to epidemiologic research, early detection, and diagnosis, considerable progress has been made in systemic treatment with molecular-targeted agents for patients with advanced HCC. Moreover, encouraging reports of recent clinical trials of combination therapy with immune-checkpoint inhibitors (ICIs) has raised high hopes. Each HCC is the result of a unique combination of somatic alterations, including genetic, epigenetic, transcriptomic, and metabolic events, leading to conclusive tumoral heterogeneity. Recent advances in comprehensive genetic analysis have accelerated molecular classification and defined subtypes with specific characteristics, including immune-associated molecular profiles reflecting the immune reactivity in the tumor. In considering the development of therapeutic strategies in combination with immunotherapy, proper interpretation of molecular pathological characterization could lead to effective therapeutic deployment and enable individualization of the management of HCC. Here, we review distinctive molecular alterations in the subtype classification of HCC, current therapies, and representative clinical trials with alternative immune-combination approaches from a molecular pathological point.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Terapia Combinada , Humanos , Imunoterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Microambiente Tumoral
12.
Sci Rep ; 10(1): 21412, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293585

RESUMO

Stemness factors control microRNA expression in cancer stem cells. Downregulation of miR-100 and miR-125b is associated with tumor progression and prognosis of various cancers. Comparing miRNA profiling of patient-derived tumorsphere (TS) and adherent (2D) hepatocellular carcinoma cells, miR-100 and miR-125b are identified to have association with stemness. In TS cells, miR-100 and miR-125b were downregulated comparing to 2D cells. The finding was reproduced in Hep3B cells. Overexpression of stemness factors NANOG, OCT4 and SOX2 by introduction of gene constructs in Hep3B cells suppressed these two miRNA expression levels. Treatment of chromeceptin, an IGF signaling pathway inhibitor, decreased numbers of TS and inhibited the AKT/mTOR pathway. Stable cell line of miR-100 and miR-125b overexpression decreased IGF2 expression and inhibited tumor growth in the xenograft model. In conclusion, miR-100 and miR-125b have tumor suppressor role in hepatocellular carcinoma through inhibiting IGF2 expression and activation of the AKT/mTOR pathway.


Assuntos
Carcinoma Hepatocelular/genética , Fator de Crescimento Insulin-Like II/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Regulação para Cima , Benzopiranos/farmacologia , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Prognóstico
13.
EBioMedicine ; 53: 102659, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32113157

RESUMO

BACKGROUND: The tumor microenvironment can be classified into immunologically active "inflamed" tumors and inactive "non-inflamed" tumors based on the infiltration of cytotoxic immune cells. Previous studies on liver cancer have reported a superior prognosis for inflamed tumors compared to non-inflamed tumors. However, liver cancer is highly heterogeneous immunologically and genetically, and a finer classification of the liver cancer microenvironment may improve our understanding of its immunological diversity and response to immune therapy. METHODS: We characterized the immune gene signatures of 234 primary liver cancers, mainly virus-related, from a Japanese population using RNA-Seq of tumors and matched non-tumorous hepatitis livers. We then compared them with the somatic alterations detected using the whole-genome sequencing. FINDINGS: Liver cancers expressed lower levels of immune marker genes than non-tumorous hepatitis livers, indicating immunosuppression in the tumor microenvironment. Several immunosuppression mechanisms functioned actively and mutually exclusively, resulting in four immune subclasses of liver cancer: tumor-associated macrophage (TAM), CTNNB1, cytolytic activity (CYT), and regulatory T cell (Treg). The CYT and Treg subclasses represented inflamed tumors, while the TAM and CTNNB1 subclasses represented non-inflamed tumors. The TAM subclass, which comprised 31% of liver cancers, showed a poor survival, expressed elevated levels of extracellular matrix genes, and was associated with somatic mutations of chromatin regulator ARID2. The results of cell line experiments suggested a functional link between ARID2 and chemokine production by liver cancer cells. INTERPRETATION: Primary liver cancer was classified into four subclasses based on mutually exclusive mechanisms for immunosuppression. This classification indicate the importance of immunosuppression mechanisms, such as TAM and Treg, as therapeutic targets for liver cancer. FUNDING: The Japan Agency for Medical Research and Development (AMED).


Assuntos
Neoplasias Hepáticas/classificação , Transcriptoma , Evasão Tumoral/genética , Idoso , Linhagem Celular Tumoral , Quimiocinas/genética , Quimiocinas/metabolismo , Feminino , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Masculino , Pessoa de Meia-Idade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral
14.
Ann Surg ; 271(4): 732-739, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-29979246

RESUMO

OBJECTIVE: To predict metachronous liver metastasis after pancreatectomy for pancreatic neuroendocrine neoplasms (Pan-NENs). SUMMARY OF BACKGROUND DATA: Liver metastasis determines the prognosis of patients with Pan-NENs, but no index exists in the WHO 2017 classification for this prediction. METHODS: Between April 2014 and March 2018, resected primary tumors from 20 patients with or without simultaneous liver metastasis were examined using genome-wide gene expression analysis. For validation analysis, resected primary tumors from 62 patients without simultaneous liver metastasis were examined for PAX6 expression. RESULTS: Gene expression profiling revealed pancreatic beta cell genes (NES, -2.0; P < 0.001) as the most downregulated set in patients with simultaneous liver metastasis. In the test study, PAX6 was the most valuable index for liver metastasis (log FC, -3.683; P = 0.0096). Multivariate analysis identified PAX6 expression (hazard ratio, 0.2; P = 0.03) as an independent risk factor for metachronous liver metastasis-free survival (mLM-FS). The 5-year mLM-FS of patients with high versus low PAX6 expression was significantly better (95% vs 66%, respectively; P < 0.0001). The 5-year overall survival rate of was also better than in those with high versus low PAX6 expression (100% vs 87%, respectively). Patients with low PAX 6 expression were significantly younger and leaner, had a higher Ki-67 index (P = 0.01, 0.007, 0.008, respectively), and showed a higher mitotic rate than patients with high PAX6 expression. CONCLUSIONS: Downregulated pancreatic beta cell genes involving PAX6 in primary tumors may predict mLM and poor overall survival after primary tumor resection in Pan-NEN patients.


Assuntos
Células Secretoras de Insulina/metabolismo , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/cirurgia , Fator de Transcrição PAX6/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Biomarcadores Tumorais/metabolismo , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Hepatectomia , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Masculino , Tumores Neuroendócrinos/mortalidade , Tumores Neuroendócrinos/secundário , Pancreatectomia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Fatores de Risco , Análise de Sobrevida
15.
Carcinogenesis ; 41(6): 734-742, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31665232

RESUMO

Genomic analyses have recently discovered the malignant subtype of human intrahepatic cholangiocarcinoma (ICC) characterized by frequent mutations of chromatin remodeling gene ARID1A; however, the biological and molecular functions still remain obscure. We here examined the clinical and biological significances of ARID1A deficiency in human ICC. Immunohistochemical analysis demonstrated that the loss of ARID1A was an independent prognostic factor for overall survival of ICC patients (P = 0.023). We established ARID1A-knockout (KO) cells by using the CRISPR/Cas9 system from two human cholangiocarcinoma cell lines. ARID1A-KO cells exhibited significantly enhanced migration, invasion, and sphere formation activity. Microarray analysis revealed that ALDH1A1, a stemness gene, was the most significantly elevated genes in ARID1A-KO cells. In addition, ALDH enzymatic activity as a hallmark of cancer stem cells was markedly high in the KO cells. ARID1A and histone deacetylase 1 were directly recruited to the ALDH1A1 promoter region in cholangiocarcinoma cells with undetectable ALDH1A1 expression by chromatin immunoprecipitation assay. The histone H3K27 acetylation level at the ALDH1A1 promoter region was increased in cells when ARID1A was disrupted (P < 0.01). Clinically, inverse correlation between ARID1A and ALDH1A1 expression was also identified in primary ICC (P = 0.018), and ARID1A-negative and ALDH1A1-positve ICCs showed worse prognosis than only ARID1A-negative cases (P = 0.002). In conclusion, ARID1A may function as a tumor suppressor in ICC through transcriptional downregulation of ALDH1A1 expression with decreasing histone H3K27 acetylation. Our studies provide the basis for the development of new epigenetic approaches to ARID1A-negative ICC. Immunohistochemical loss of ARID1A is an independent prognostic factor in intrahepatic cholangiocarcinoma patients. ARID1A recruits HDAC1 to the promoter region of ALDH1A1, a stemness gene, and epigenetically suppresses ALDH1A1 expression with decreasing histone H3K27 acetylation in cholangiocarcinoma cells.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/patologia , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Células-Tronco Neoplásicas/patologia , Retinal Desidrogenase/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Família Aldeído Desidrogenase 1/genética , Apoptose , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histonas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Retinal Desidrogenase/genética , Taxa de Sobrevida , Fatores de Transcrição/genética , Células Tumorais Cultivadas
16.
Sci Rep ; 9(1): 19601, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862949

RESUMO

Non-alcoholic steatohepatitis (NASH), characterized by chronic inflammation and fibrosis, is predicted to be the leading cause of cirrhosis and hepatocellular carcinoma (HCC) in the next decade. Although recent evidence suggests the importance of fibrosis as the strongest determinant of HCC development, the molecular mechanisms underlying NASH-induced carcinogenesis still remain unclear. Here we performed RNA sequencing analysis to compare gene expression profiles of activated fibroblasts prepared from two distinct liver fibrosis models: carbon tetrachloride-induced fibrosis as a model without obesity and HCC and genetically obese melanocortin 4 receptor-deficient (MC4R-KO) mice fed Western diet, which develop steatosis, NASH, and eventually HCC. Our data showed that activated fibroblasts exhibited distinct gene expression patterns in each etiology, and that the 'pathways in cancer' were selectively upregulated in the activated fibroblasts from MC4R-KO mice. The most upregulated gene in these pathways was fibroblast growth factor 9 (FGF9), which was induced by metabolic stress such as palmitate. FGF9 exerted anti-apoptotic and pro-migratory effects in fibroblasts and hepatoma cells in vitro and accelerated tumor growth in a subcutaneous xenograft model. This study reveals upregulation of cancer-associated gene expression in activated fibroblasts in NASH, which would contribute to the progression from NASH to HCC.


Assuntos
Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regulação para Cima , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Fator 9 de Crescimento de Fibroblastos/genética , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias
17.
J Exp Clin Cancer Res ; 38(1): 127, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866995

RESUMO

BACKGROUND: Mechanistic target of rapamycin (mTOR) pathway is essential for the growth of gastric cancer (GC), but mTOR inhibitor everolimus was not effective for the treatment of GCs. The Cancer Genome Atlas (TCGA) researchers reported that most diffuse-type GCs were genomically stable (GS). Pathological analysis suggested that some diffuse-type GCs developed from intestinal-type GCs. METHODS: We established patient-derived xenograft (PDX) lines from diffuse-type GCs, and searched for drugs that suppressed their growth. Diffuse-type GCs were classified into subtypes by their gene expression profiles. RESULTS: mTOR inhibitor temsirolimus strongly suppressed the growth of PDX-derived diffuse-type GC-initiating cells, which was regulated via Wnt-mTOR axis. These cells were microsatellite unstable (MSI) or chromosomally unstable (CIN), inconsistent with TCGA report. Diffuse-type GCs in TCGA cohort could be classified into two clusters, and GS subtype was major in cluster I while CIN and MSI subtypes were predominant in cluster II where PDX-derived diffuse-type GC cells were included. We estimated that about 9 and 55% of the diffuse-type GCs in cluster II were responders to mTOR inhibitors and checkpoint inhibitors, respectively, by identifying PIK3CA mutations and MSI condition in TCGA cohort. These ratios were far greater than those of diffuse-type GCs in cluster I or intestinal-type GCs. Further analysis suggested that diffuse-type GCs in cluster II developed from intestinal-type GCs while those in cluster I from normal gastric epithelial cells. CONCLUSION: mTOR inhibitors and checkpoint inhibitors might be useful for the treatment of a subset of diffuse-type GCs which may develop from intestinal-type GCs.


Assuntos
Neoplasias Gástricas/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Humanos , Camundongos , Instabilidade de Microssatélites , Neoplasias Gástricas/patologia
18.
J Gastroenterol ; 54(7): 667-668, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30923915

RESUMO

Cancer development is a multistep process involving genetic and cellular alterations, and recent advances in next-generation sequencing have elucidated mutation landscapes of premalignant lesions as well as early- and late-stage tumors. In this issue of Journal of Gastroenterology, Kim and colleagues contributed to the better understanding of genetic events in putative precursors of hepatocellular carcinoma (HCC). Precancerous tissues are divided into canonical and non-canonical types, which share common driver mutations with cancerous lesions or not, and potential gatekeeper gene(s) for clonal selection play a critical role in driving precursors to cancers not only in HCC, but also in esophageal, gastric, colorectal, and pancreatic cancers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinogênese , Evolução Molecular , Humanos , Cirrose Hepática , Mutação
19.
EBioMedicine ; 40: 457-470, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30598371

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a heterogeneous disease with various etiological factors, and ranks as the second leading cause of cancer-related mortality worldwide due to multi-focal recurrence. We herein identified three major subtypes of HCC by performing integrative analysis of two omics data sets, and clarified that this classification was closely correlated with clinicopathological factors, immune profiles and recurrence patterns. METHODS: In the test study, 183 tumor specimens surgically resected from HCC patients were collected for unsupervised clustering analysis of gene expression signatures and comparative analysis of gene mutations. These results were validated by using genome, methylome and transcriptome data of 373 HCC patients provided from the Cancer Genome Atlas Network. In addition, omics data were obtained from pairs of primary and recurrent HCC. FINDINGS: Comprehensive molecular evaluation of HCC by multi-platform analysis defined three major subtypes: (1) mitogenic and stem cell-like tumors with chromosomal instability; (2) CTNNB1-mutated tumors displaying immune suppression; and (3) metabolic disease-associated tumors, which included an immunogenic subgroup characterized by macrophage infiltration and favorable prognosis. Although genomic and epigenomic analysis explicitly distinguished between HCC with intrahepatic metastasis (IM) and multi-centric HCC (MC), the phenotypic similarity between the primary and recurrent tumors was not correlated to the IM/MC origin, but to the classification. INTERPRETATION: Identification of these HCC subtypes provides further insights into patient stratification as well as presents opportunities for therapeutic development. FUND: Ministry of Education, Culture, Sports, Science and Technology of Japan (16H02670 and 18K19575), Japan Agency for Medical Research and Development (JP15cm0106064, JP17cm0106518, JP18cm0106540 and JP18fk0210040).


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Imunomodulação , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunomodulação/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Prognóstico , Transcriptoma
20.
Carcinogenesis ; 40(1): 15-26, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30508037

RESUMO

Histone modification plays important molecular roles in development and progression of cancers. Dysregulation of histone H3 arginine (R) methylation is still unknown in primary cancer, including gastric cancer (GC). Although PRMT6 contributes to asymmetric dimethylation at H3R2 (H3R2me2as) in cancer cells, its molecular functions are poorly understood in GC. In this study, we assessed H3R2me2as and PRMT6 expression levels in 133 primary GC tissues by immunohistochemistry. Increased H3R2me2as was found in 68 GC (51.1%) cases and independently related to poor prognosis. PRMT6 was overexpressed in 70 GC (52.6%) and strongly correlated with the global H3R2me2as levels (P < 0.001). By analyzing biological functions of PRMT6 in GC cell lines by lentivirus-based systems, PRMT6 overexpression enhanced global H3R2me2as and invasiveness in vitro, while PRMT6 knockout (PRMT6-KO) suppressed these effects and tumorigenicity in vivo. ChIP and microarray assays demonstrated that PRMT6-KO GC cells decreased the enrichments of H3R2me2as at the promoter regions of PCDH7, SCD and IGFBP5, resulting in upregulation of their gene expression. PRMT6 was recruited to the promoter regions of PCDH7 and SCD in the PRMT6-overexpressed cells. Knockdown of tumor suppressor PCDH7 in the PRMT6-KO GC cells elevated cell migration and invasion. PRMT6 expression inversely correlated with PCDH7 expression in primary GC (P = 0.021). Collectively, our findings strongly indicate that H3R2me2as is a strong prognostic indicator of GC patients, and PRMT6-overexpressing GC cells may acquire invasiveness through direct transcriptional inhibition of PCDH7 by increasing H3R2me2as level. Thus, inhibition of the PRMT6-H3R2me2as pathway could be a promising new therapeutic strategy in GC.


Assuntos
Histonas/metabolismo , Proteínas Nucleares/fisiologia , Proteína-Arginina N-Metiltransferases/fisiologia , Neoplasias Gástricas/metabolismo , Animais , Arginina/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/fisiologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Masculino , Metilação , Camundongos , Protocaderinas , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA