Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 710: 149843, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593617

RESUMO

The success rate of flap tissue reconstruction has increased in recent years owing to advancements in microsurgical techniques. However, complications, such as necrosis, are still more prevalent in diabetic patients compared to non-diabetic individuals, presenting an ongoing challenge. To address this issue, many previous studies have examined vascular anastomoses dilation and stability, primarily concerning surgical techniques or drugs. In contrast, in the present study, we focused on microvascular damage of the peripheral microvessels in patients with diabetes mellitus and the preventative impact of nafamostat mesylate. Herein, we aimed to investigate the effects of hyperglycemia on glycocalyx (GCX) levels in mice with type 2 diabetes. We examined the endothelial GCX (eGCX) in skin flap tissue of 9-12-week-old type 2 diabetic mice (db/db mice) using a perforator skin flap and explored treatment with nafamostat mesylate. The growth rates were compared after 1 week. Heterotype (db/+) mice were used as the control group. Morphological examination of postoperative tissues was performed at 1, 3, 5, and 7 days post-surgery. In addition, db/db mice were treated with 30 mg/kg/day of nafamostat mesylate daily and were evaluated on postoperative day 7. Seven days after surgery, all db/db mice showed significant partial flap necrosis. Temporal observation of the skin flaps revealed a stasis-like discoloration and necrosis starting from the contralateral side of the remaining perforating branch. The control group did not exhibit flap necrosis, and the flap remained intact. In the quantitative assessment of endothelial glycans using lectins, intensity scoring showed that the eGCX in the db/db group was significantly thinner than that in the db/+ group. These results were consistent with the scanning electron microscopy findings. In contrast, treatment with nafamostat mesylate significantly improved the flap engraftment rate and suppressed eGCX injury. In conclusion, treatment with nafamostat mesylate improves the disrupted eGCX structure of skin flap tissue in db/db mice, potentially ameliorating the impaired capillary-to-venous return in the skin flap tissue.


Assuntos
Benzamidinas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Guanidinas , Doenças Vasculares , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Glicocálix , Modelos Animais de Doenças , Camundongos Endogâmicos , Necrose/tratamento farmacológico
2.
J Infect Chemother ; 30(2): 111-117, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37717607

RESUMO

INTRODUCTION: This study aimed to determine the impact of augmented renal clearance (ARC) on anticoagulation therapy in critically ill patients with coronavirus disease 2019 (COVID-19). METHODS: This retrospective cohort study included adult patients with severe COVID-19 with ARC who had been treated at our hospital between 2020 and 2021. We measured the estimated glomerular filtration rate calculated by the Chronic Kidney Disease Epidemiology Collaboration formula (eGFRCKD-EPI) every morning, and ARC condition was defined as eGFRCKD-EPI ≥ 130 mL/min/1.73 m2. Multivariate regression analysis with Huber-White sandwich estimator was performed to examine the association of unfractionated heparin (UH) dosage between blood test timings with activated partial thromboplastin time (APTT) compared with and without ARC. RESULTS: We identified 38 enrolled patients: seven and 31 in the ARC and non-ARC groups, respectively. In the ARC coexisting condition, a higher dose of UH, which corresponded to the total dose in 24 h from the previous day, was required to achieve the same APTT prolongation, with a significant difference (p < 0.001). CONCLUSIONS: Our study suggests that careful monitoring and consideration of higher UH doses in critically ill patients with COVID-19 is necessary because anticoagulation failure can occur during ARC.


Assuntos
COVID-19 , Insuficiência Renal Crônica , Adulto , Humanos , Heparina/uso terapêutico , Estudos Retrospectivos , Estado Terminal , Insuficiência Renal Crônica/induzido quimicamente , Anticoagulantes/uso terapêutico , Creatinina
3.
Pancreatology ; 23(8): 911-918, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981522

RESUMO

BACKGROUND/OBJECTIVE: Acute pancreatitis is an aseptic inflammation caused by pathologically activated pancreatic enzymes and inflammatory mediators produced secondarily by neutrophils and other inflammatory cells and is one of the most difficult diseases to treat. This study aimed to investigate the role of neutrophils in pancreatitis by examining tissue dynamics. METHODS: We created a model of caerulein-induced pancreatitis in 12-week-old male granulocyte colony-stimulating factor knockout mice (G-CSF-KO) and wild-type littermate control mice (six intraperitoneal injections of caerulein [80 µg/kg body weight] at hourly intervals for 2 days). Mice were sacrificed 0, 3, 6, 12, 24, 36, 48, 72, and 168 h after caerulein administration and examined histologically. RESULTS: The survival rate after one week of caerulein administration was 100 % in the control mice, whereas it was significantly lower (10 %) in the G-CSF-KO mice. Histological examination revealed significant hemorrhage and inflammatory cell migration in the G-CSF-KO mice, indicating prolonged inflammation. CONCLUSION: Prolonged inflammation was observed in the G-CSF-KO mice. Tissue cleanup by neutrophils during the acute phase of inflammation may influence healing through the chronic phase.


Assuntos
Pancreatite , Camundongos , Masculino , Animais , Pancreatite/induzido quimicamente , Pancreatite/patologia , Neutrófilos , Ceruletídeo/toxicidade , Doença Aguda , Inflamação/patologia , Camundongos Knockout , Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Pâncreas/patologia , Modelos Animais de Doenças
4.
Sci Rep ; 13(1): 16753, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798324

RESUMO

Intradialytic hypotension and arrhythmias are complications of hemodialysis. They are associated with decreased intravascular volume due to reduced ultrafiltration volume, cardiac function, and arterial tone. The vascular endothelial glycocalyx, which exists on the surface of healthy vascular endothelial cells and maintains vascular permeability, has been suggested to be impaired by hemodialysis. This single-center retrospective study evaluated the association between syndecan-1, an endothelial glycocalyx dysfunction marker, and complications of hemodialysis. We enrolled 92 patients who underwent outpatient hemodialysis at Gifu Seiryu Hospital from April to July 2022 (346 hemodialysis sessions). The median duration and time of hemodialysis were 40 months and 4.1 h, respectively. Median serum syndecan-1 levels were 67.7 ng/mL before and 98.3 ng/mL after hemodialysis. Hemodialysis complications were noted in 68 sessions, all of which were hypotension. No correlation between pre-hemodialysis syndecan-1 levels and the incidence of complications was observed. However, a positive correlation between the amount of change in syndecan-1 levels before and after hemodialysis and the incidence of hemodialysis complications was noted. Conversely, syndecan-1 levels did not correlate with brain or atrial natriuretic peptides, suggesting that impairment of the vascular endothelial glycocalyx may be a possible cause of intradialytic hypotension and may be useful in preventing intradialytic hypotension.


Assuntos
Hipotensão , Sindecana-1 , Humanos , Estudos Retrospectivos , Células Endoteliais , Diálise Renal/efeitos adversos , Hipotensão/etiologia
5.
Heliyon ; 8(11): e11262, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36353180

RESUMO

Introduction: Myocardial dysfunction occurs in patients with sepsis due to vascular endothelial injury. Recombinant human thrombomodulin (rhTM) attenuates vascular endothelial injuries through endothelial glycocalyx (eGC) protection. Hypothesis: We hypothesized that rhTM attenuates myocardial dysfunction via the inhibition of vascular endothelial injury during sepsis. Methods: Ten-week-old male C57BL6 mice were injected intraperitoneally with 20 mg/kg of lipopolysaccharide (LPS). In rhTM-treated mice, rhTM was injected intraperitoneally at 3 and 24 h after LPS injection. Saline was injected intraperitoneally as control. To assess for eGC injury, intensity score was measured 48 h after the LPS injection. To confirm vascular endothelial injuries, ultrastructural analysis was performed using scanning (SEM) and transmission electron microscopy (TEM). Results: The survival rate of the rhTM group at 48 h after LPS injection was significantly higher than that of the control group (68% vs. 17%, p < 0.05). The serum level of troponin I in the rhTM group was lower than that in the control (2.2 ± 0.4 ng/dL vs 9.4 ± 1.1 ng/dL, p < 0.05). The expression of interleukin-6 (IL-6) was attenuated in the rhTM-treated group than in the control (65.3 ± 15.3 ng/mL vs 226.3 ± 19.4 ng/mL, p < 0.05). The serum concentration of syndecan-1, a marker of glycocalyx damage, was significantly decreased 48 h post-administration of LPS in the rhTM-treated group than in the control group. In ultrastructural analysis using SEM and TEM, eGC peeled off from the surface of the capillary lumen in the control. Conversely, the eGC injury was attenuated in the rhTM group. Gene set enrichment analysis revealed that osteomodulin, osteoglycin proline/arginine-rich end leucine-rich repeat protein, and glypican-1, which are proteoglycans, were preserved by rhTM treatment. Their protein expression was retained in endothelial cells. Conclusion: rhTM attenuates sepsis-induced myocardial dysfunction via eGC protection.

6.
Front Med (Lausanne) ; 8: 791309, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004758

RESUMO

Glycocalyx is present on the surface of healthy endothelium, and the concentration of serum syndecan-1 can serve as an injury marker. This study aimed to assess endothelial injury using serum syndecan-1 as a marker of endothelial glycocalyx injury in patients who underwent hemodialysis. In this single-center, retrospective, observational study, 145 patients who underwent hemodialysis at the Gifu University Hospital between March 2017 and December 2019 were enrolled. The median dialysis period and time were 63 months and 3.7 h, respectively. The serum syndecan-1 concentration significantly increased from 124.6 ± 107.8 ng/ml before hemodialysis to 229.0 ± 138.1 ng/ml after hemodialysis (P < 0.001). Treatment with anticoagulant nafamostat mesylate inhibited hemodialysis-induced increase in the levels of serum syndecan-1 in comparison to unfractionated heparin. Dialysis time and the change in the syndecan-1 concentration were positively correlated. Conversely, the amount of body fluid removed and the changes in the syndecan-1 concentration were not significantly correlated. The reduction in the amount of body fluid removed and dialysis time inhibited the change in the syndecan-1 levels before and after hemodialysis. In conclusion, quantitative assessment of the endothelial glycocalyx injury during hemodialysis can be performed by measuring the serum syndecan-1 concentration, which may aid in the selection of appropriate anticoagulants, reduction of hemodialysis time, and the amount of body fluid removed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA