RESUMO
Aphanomyces cochlioides zoospores show chemotaxis to cochliophilin A (5-hydroxy-6,7-methylenedioxyflavone, 1), a host derived attractant, and also respond to 5,7-dihydroxyflavone (2) known as an equivalent chemoattractant. To investigate the chemotactic receptors in the zoospores, we designed photoaffinity probes 4'-azido-5,7-dihydroxyflavone (3) and 4'-azido-7-O-biotinyl-5-hydroxyflavone (4) considering chemical structure of 2. Both 3 and 4 had zoospore attractant activity which was competitive with that of 1. When zoospores were treated with the biotinylated photoaffinity probe followed by UV irradiation and streptavidin-gold or peroxidase-conjugated streptavidin, probe-labeled proteins were detected on the cell membrane. This result indicated that the 1-specific-binding proteins, a candidate for hypothetical cochliophilin A receptor, were localized on the cell membrane of the zoospores. This is the first experimental evidence of flavonoid-binding proteins being present in zoospores, using chemically synthesized azidoflavone as photoaffinity-labeling reagent.
Assuntos
Aphanomyces/metabolismo , Aphanomyces/ultraestrutura , Quimiotaxia/fisiologia , Flavonas/metabolismo , Flavonas/farmacologia , Peronospora/ultraestrutura , Marcadores de Fotoafinidade , Receptores de Superfície Celular/metabolismo , Esporos/metabolismo , Esporos/ultraestrutura , Aphanomyces/efeitos dos fármacos , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Peronospora/efeitos dos fármacos , Peronospora/metabolismo , Especificidade da Espécie , Esporos/efeitos dos fármacosRESUMO
In a survey of plant secondary metabolites regulating the behavior of phytopathogenic Aphanomyces cochlioides zoospores, we found that leaf extracts of Amaranthus gangeticus and cotyledon extracts of pea (Pisum sativum) remarkably halted the motility of zoospores. Bioassay-directed fractionation of A. gangeticus and pea constituents revealed that the halting activity was dependent on a single chemical factor (halting factor). The active principle was identified as nicotinamide (1) by comparing its biological activity and spectroscopic properties with those of the authentic compound. Nicotinamide (1) showed potent halting activity toward the zoospores of A. cochlioides and A. euteiches, but it exhibited very less activity against other Oomycetes, Pythium aphanidermatum and Phytophthora infestans zoospores. Interestingly, the zoospores halted by nicotinamide (1) encysted within 10-15 min and then the resulting cystospores regenerated zoospores instead of germination. Nicotinamide (1) and related compounds were subjected to the halting activity bioassay to elucidate the structure-activity relationships. These bioassays revealed that part structures of (A) the aromatic ring containing at least one nitrogen atom, (B) carbonyl-like group adjacent to the aromatic ring and (C) hydrogen atoms on the amide group are responsible for the strong activity. So far, this is the first report of halting activity of nicotinamide (1) against fungal zoospores.
Assuntos
Amaranthus/química , Niacinamida/farmacologia , Ácidos Nicotínicos/farmacologia , Oomicetos/fisiologia , Ácidos Nicotínicos/química , Ácidos Nicotínicos/isolamento & purificação , Oomicetos/efeitos dos fármacos , Phytophthora/efeitos dos fármacos , Phytophthora/fisiologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plantas Medicinais/química , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia , Relação Estrutura-AtividadeRESUMO
Erinacines as cyathane-xylosides are known to have potent stimulating activity for nerve-growth-factor synthesis. Our search for new cyathane metabolites from a liquid culture of Hericium erinaceum YB4-6237 resulted in the isolation of a new erinacine named erinacine Q (1). NMR spectrometry and a chemical derivation from erinacine P (2) determined the compound to be a derivative in which the formyl group of erinacine P had been reduced to the hydroxymethyl group. To clarify the biosynthetic relationship between erinacine Q and the others, [1'-13C]erinacine Q ([1'-13C]-1) was chemically derived from [1'-13C]erinacine P ([1'-13C]-2) which had been prepared by feeding [1-13C]-D-glucose to the basidiomycete. The biotransformation of labeled erinacine Q into [1'-13C]erinacine C ([1'-13C]-5) via [1'-13C]erinacine P in this basidiomycete was demonstrated by NMR spectrometry.