Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 64(11): 100443, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37714410

RESUMO

Phosphatidylserine (PS) is an acidic phospholipid that is involved in various cellular events. Heterologous dominant mutations have been identified in the gene encoding PS synthase 1 (PSS1) in patients with a congenital disease called Lenz-Majewski syndrome (LMS). Patients with LMS show various symptoms, including craniofacial/distal-limb bone dysplasia and progressive hyperostosis. The LMS-causing gain-of-function mutants of PSS1 (PSS1LMS) have been shown to synthesize PS without control, but why the uncontrolled synthesis would lead to LMS is unknown. Here we investigated the effect of PSS1LMS on osteoclasts (OCs) to elucidate the causative mechanism of LMS. PSS1LMS did not affect the expression of OC-related genes but inhibited the formation, multinucleation, and activity of OCs. Especially, OCs expressing PSS1LMS showed abnormal patterns and dynamics of actin podosome clusters, which have roles in OC migration and fusion. PSS1LMS did not affect the level of PS but changed the acyl chain compositions of PS and phosphatidylethanolamine, and decreased the level of phosphatidylinositol. The introduction of a catalytically inactive mutation into PSSLMS canceled the changes in phospholipids and the phenotypes observed in OCs expressing PSS1LMS. A gain-of-function mutant of PSS2 (PSS2 R97K) also impaired OC formation and caused changes in phospholipid composition similar to the changes caused by PSS1LMS. Our results suggest that uncontrolled PS synthesis by PSS1LMS causes changes in the quantity or fatty acid composition of certain phospholipid classes, impairing OC formation and function, which might be a cause of osteosclerosis in patients with LMS.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Humanos , Osteoclastos/metabolismo , Fosfolipídeos/metabolismo
2.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37470177

RESUMO

Cellular functions, such as differentiation and migration, are regulated by the extracellular microenvironment, including the extracellular matrix (ECM). Cells adhere to ECM through focal adhesions (FAs) and sense the surrounding microenvironments. Although FA proteins have been actively investigated, little is known about the lipids in the plasma membrane at FAs. In this study, we examine the lipid composition at FAs with imaging and biochemical approaches. Using the cholesterol-specific probe D4 with total internal reflection fluorescence microscopy and super-resolution microscopy, we show an enrichment of cholesterol at FAs simultaneously with FA assembly. Furthermore, we establish a method to isolate the lipid from FA-rich fractions, and biochemical quantification of the lipids reveals that there is a higher content of cholesterol and phosphatidylcholine with saturated fatty acid chains in the lipids of the FA-rich fraction than in either the plasma membrane fraction or the whole-cell membrane. These results demonstrate that plasma membrane at FAs has a locally distinct lipid composition compared to the bulk plasma membrane.


Assuntos
Adesões Focais , Fosfatidilcolinas , Adesões Focais/metabolismo , Fosfatidilcolinas/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Matriz Extracelular/metabolismo
3.
Nature ; 613(7942): 160-168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477540

RESUMO

Multilocular adipocytes are a hallmark of thermogenic adipose tissue1,2, but the factors that enforce this cellular phenotype are largely unknown. Here, we show that an adipocyte-selective product of the Clstn3 locus (CLSTN3ß) present in only placental mammals facilitates the efficient use of stored triglyceride by limiting lipid droplet (LD) expansion. CLSTN3ß is an integral endoplasmic reticulum (ER) membrane protein that localizes to ER-LD contact sites through a conserved hairpin-like domain. Mice lacking CLSTN3ß have abnormal LD morphology and altered substrate use in brown adipose tissue, and are more susceptible to cold-induced hypothermia despite having no defect in adrenergic signalling. Conversely, forced expression of CLSTN3ß is sufficient to enforce a multilocular LD phenotype in cultured cells and adipose tissue. CLSTN3ß associates with cell death-inducing DFFA-like effector proteins and impairs their ability to transfer lipid between LDs, thereby restricting LD fusion and expansion. Functionally, increased LD surface area in CLSTN3ß-expressing adipocytes promotes engagement of the lipolytic machinery and facilitates fatty acid oxidation. In human fat, CLSTN3B is a selective marker of multilocular adipocytes. These findings define a molecular mechanism that regulates LD form and function to facilitate lipid utilization in thermogenic adipocytes.


Assuntos
Adipócitos , Proteínas de Ligação ao Cálcio , Metabolismo dos Lipídeos , Proteínas de Membrana , Animais , Feminino , Humanos , Camundongos , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Placenta , Triglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Ácidos Graxos/metabolismo , Hipotermia/metabolismo , Termogênese
4.
Nat Commun ; 13(1): 3013, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641514

RESUMO

Pulmonary hypertension is a fatal rare disease that causes right heart failure by elevated pulmonary arterial resistance. There is an unmet medical need for the development of therapeutics focusing on the pulmonary vascular remodeling. Bioactive lipids produced by perivascular inflammatory cells might modulate the vascular remodeling. Here, we show that ω-3 fatty acid-derived epoxides (ω-3 epoxides) released from mast cells by PAF-AH2, an oxidized phospholipid-selective phospholipase A2, negatively regulate pulmonary hypertension. Genetic deletion of Pafah2 in mice accelerate vascular remodeling, resulting in exacerbation of hypoxic pulmonary hypertension. Treatment with ω-3 epoxides suppresses the lung fibroblast activation by inhibiting TGF-ß signaling. In vivo ω-3 epoxides supplementation attenuates the progression of pulmonary hypertension in several animal models. Furthermore, whole-exome sequencing for patients with pulmonary arterial hypertension identifies two candidate pathogenic variants of Pafah2. Our findings support that the PAF-AH2-ω-3 epoxide production axis could be a promising therapeutic target for pulmonary hypertension.


Assuntos
Ácidos Graxos Ômega-3 , Hipertensão Pulmonar , Animais , Compostos de Epóxi/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Humanos , Hipertensão Pulmonar/patologia , Mastócitos/patologia , Camundongos , Remodelação Vascular
5.
Commun Chem ; 5(1): 61, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36697617

RESUMO

Phosphoinositide species, differing in phosphorylation at hydroxyls of the inositol head group, play roles in various cellular events. Despite the importance of phosphoinositides, simultaneous quantification of individual phosphoinositide species is difficult using conventional methods. Here we developed a supercritical fluid chromatography-mass spectrometry method that can quantify the molecular species of all seven phosphoinositide regioisomers. We used this method to analyze (1) profiles of phosphoinositide species in mouse tissues, (2) the effect of lysophosphatidylinositol acyltransferase 1-depletion on phosphoinositide acyl-chain composition in cultured cells, and (3) the molecular species of phosphatidylinositol-3-phosphate produced during the induction of autophagy. Although further improvement is needed for the absolute quantification of minor phosphoinositide regioisomers in biological samples, our method should clarify the physiological and pathological roles of phosphoinositide regioisomers at the molecular species level.

6.
Gut ; 70(1): 180-193, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32253259

RESUMO

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is a common prelude to cirrhosis and hepatocellular carcinoma. The genetic rs641738 C>T variant in the lysophosphatidylinositol acyltransferase 1 (LPIAT1)/membrane bound O-acyltransferase domain-containing 7, which incorporates arachidonic acid into phosphatidylinositol (PI), is associated with the entire spectrum of NAFLD. In this study, we investigated the mechanism underlying this association in mice and cultured human hepatocytes. DESIGN: We generated the hepatocyte-specific Lpiat1 knockout mice to investigate the function of Lpiat1 in vivo. We also depleted LPIAT1 in cultured human hepatic cells using CRISPR-Cas9 systems or siRNA. The effect of LPIAT1-depletion on liver fibrosis was examined in mice fed high fat diet and in liver spheroids. Lipid species were measured using liquid chromatography-electrospray ionisation mass spectrometry. Lipid metabolism was analysed using radiolabeled glycerol or fatty acids. RESULTS: The hepatocyte-specific Lpiat1 knockout mice developed hepatic steatosis spontaneously, and hepatic fibrosis on high fat diet feeding. Depletion of LPIAT1 in cultured hepatic cells and in spheroids caused triglyceride accumulation and collagen deposition. The increase in hepatocyte fat content was due to a higher triglyceride synthesis fueled by a non-canonical pathway. Indeed, reduction in the PI acyl chain remodelling caused a high PI turnover, by stimulating at the same time PI synthesis and breakdown. The degradation of PI was mediated by a phospholipase C, which produces diacylglycerol, a precursor of triglyceride. CONCLUSION: We found a novel pathway fueling triglyceride synthesis in hepatocytes, by a direct metabolic flow of PI into triglycerides. Our findings provide an insight into the pathogenesis and therapeutics of NAFLD.


Assuntos
Aciltransferases/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Fosfatidilinositóis/metabolismo , Triglicerídeos/metabolismo , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
7.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999028

RESUMO

Glycerophospholipids are major components of cell membranes. Phosphatidylethanolamine (PE) is a glycerophospholipid that is involved in multiple cellular processes, such as membrane fusion, the cell cycle, autophagy, and apoptosis. In this study, we investigated the role of PE biosynthesis in herpes simplex virus 1 (HSV-1) infection by knocking out the host cell gene encoding phosphate cytidylyltransferase 2, ethanolamine (Pcyt2), which is a key rate-limiting enzyme in one of the two major pathways for PE biosynthesis. Pcyt2 knockout reduced HSV-1 replication and caused an accumulation of unenveloped and partially enveloped nucleocapsids in the cytoplasm of an HSV-1-infected cell culture. A similar phenotype was observed when infected cells were treated with meclizine, which is an inhibitor of Pcyt2. In addition, treatment of HSV-1-infected mice with meclizine significantly reduced HSV-1 replication in the mouse brains and improved their survival rates. These results indicated that PE biosynthesis mediated by Pcyt2 was required for efficient HSV-1 envelopment in the cytoplasm of infected cells and for viral replication and pathogenicity in vivo The results also identified the PE biosynthetic pathway as a possible novel target for antiviral therapy of HSV-associated diseases and raised an interesting possibility for meclizine repositioning for treatment of these diseases, since it is an over-the-counter drug that has been used for decades against nausea and vertigo in motion sickness.IMPORTANCE Glycerophospholipids in cell membranes and virus envelopes often affect viral entry and budding. However, the role of glycerophospholipids in membrane-associated events in viral replication in herpesvirus-infected cells has not been reported to date. In this study, we have presented data showing that cellular PE biosynthesis mediated by Pcyt2 is important for HSV-1 envelopment in the cytoplasm, as well as for viral replication and pathogenicity in vivo This is the first report showing the importance of PE biosynthesis in herpesvirus infections. Our results showed that inhibition of Pcyt2, a key cell enzyme for PE synthesis, significantly inhibited HSV-1 replication and pathogenicity in mice. This suggested that the PE biosynthetic pathway, as well as the HSV-1 virion maturation pathway, can be a target for the development of novel anti-HSV drugs.


Assuntos
Citoplasma/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Morfogênese/fisiologia , Fosfatidiletanolaminas/biossíntese , Fosfatidiletanolaminas/fisiologia , Animais , Chlorocebus aethiops , Citoplasma/metabolismo , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos ICR , Nucleocapsídeo/metabolismo , RNA Nucleotidiltransferases/genética , Células Vero , Vírion/fisiologia , Virulência , Internalização do Vírus , Liberação de Vírus , Replicação Viral/fisiologia
8.
Biochem Biophys Res Commun ; 526(1): 122-127, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32199617

RESUMO

Overloading of the saturated fatty acid (SFA) palmitate induces cardiomyocyte death. The purpose of this study is to elucidate signaling pathways contributing to palmitate-induced cardiomyocyte death. Palmitate-induced cardiomyocyte death was induced in Toll-like receptor 2/4 double-knockdown cardiomyocytes to a similar extent as wild-type cardiomyocytes, while cardiomyocyte death was canceled out by triacsin C, a long-chain acyl-CoA synthetase inhibitor. These results indicated that palmitate induced cytotoxicity after entry and conversion into palmitoyl-CoA. Palmitoyl-CoA is not only degraded by mitochondrial oxidation but also taken up as a component of membrane phospholipids. Palmitate overloading causes cardiomyocyte membrane fatty acid (FA) saturation, which is associated with the activation of endoplasmic reticulum (ER) unfolded protein response (UPR) signaling. We focused on the ER UPR signaling as a possible mechanism of cell death. Palmitate loading activates the UPR signal via membrane FA saturation, but not via unfolded protein overload in the ER since the chemical chaperone 4-phenylbutyrate failed to suppress palmitate-induced ER UPR. The mammalian UPR relies on three ER stress sensors named inositol requiring enzyme-1 (IRE1), PKR-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). Palmitate loading activated only IRE1 and PERK. Knockdown of PERK did not affect palmitate-induced cardiomyocyte death, while knockdown of IRE1 suppressed palmitate-induced cardiomyocyte death. However, knockdown of X-box binding protein 1 (XBP1), the downstream effector of IRE1, did not affect palmitate-induced cardiomyocyte death. These results were validated by pharmacological inhibitor experiments. In conclusion, we identified that palmitate-induced cardiomyocyte death was triggered by IRE1-mediated signaling independent of XBP1.


Assuntos
Proteínas de Membrana/metabolismo , Miócitos Cardíacos/patologia , Ácido Palmítico/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Retículo Endoplasmático/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Desdobramento de Proteína/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
9.
J Mol Cell Cardiol ; 133: 1-11, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145942

RESUMO

BACKGROUND: The fatty acid (FA) composition of membrane phospholipid reflects at least in part dietary fat composition. Saturated FA (SFA) suppress Sirt1 activity, while monounsaturated FA (MUFA) counteract this effect. OBJECTIVE: We explored a role of Sirt1 in homeostatic control of the fatty acid composition of membrane phospholipid in the presence of SFA overload. METHODS AND RESULTS: Sirt1 deficiency in cardiomyocytes decreased the expression levels of liver X receptor (LXR)-target genes, particularly stearoyl-CoA desaturase-1 (Scd1), a rate-limiting enzyme in the cellular synthesis of MUFA from SFA, increased membrane SFA/MUFA ratio, and worsened left ventricular (LV) diastolic function in mice fed an SFA-rich high fat diet. In cultured cardiomyocytes, Sirt1 knockdown (KD) exacerbated the palmitate overload-induced increase in membrane SFA/MUFA ratio, which was associated with decrease in the expression of LXR-target genes, including Scd1. Forced overexpression of Scd1 in palmitate-overloaded Sirt1KD cardiomyocytes lowered the SFA/MUFA ratio. Nicotinamide mononucleotide (NMN) increased Sirt1 activity and Scd1 expression, thereby lowering membrane SFA/MUFA ratio in palmitate-overloaded cardiomyocytes. These effects of NMN were not observed for Scd1KD cardiomyocytes. LXRα/ßKD exacerbated palmitate overload-induced increase in membrane SFA/MUFA ratio, while LXR agonist T0901317 alleviated it. NMN failed to rescue Scd1 protein expression and membrane SFA/MUFA ratio in palmitate-overloaded LXRα/ßKD cardiomyocytes. The administration of NMN or T0901317 showed a dramatic reversal in membrane SFA/MUFA ratio and LV diastolic function in SFA-rich HFD-fed mice. CONCLUSION: Cardiac Sirt1 counteracted SFA overload-induced decrease in membrane phospholipid unsaturation and diastolic dysfunction via regulating LXR-mediated transcription of the Scd1 gene.


Assuntos
Diástole , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Sirtuína 1/metabolismo , Disfunção Ventricular/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo dos Lipídeos , Receptores X do Fígado/agonistas , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Sirtuína 1/genética , Disfunção Ventricular/etiologia
10.
PLoS One ; 13(12): e0208396, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533011

RESUMO

Increase in saturated fatty acid (SFA) content in membrane phospholipids dramatically affects membrane properties and cellular functioning. We sought to determine whether exogenous SFA from the diet directly affects the degree of membrane phospholipid unsaturation in adult hearts and if these changes correlate with contractile dysfunction. Although both SFA-rich high fat diets (HFDs) and monounsaturated FA (MUFA)-rich HFDs cause the same degree of activation of myocardial FA uptake, triglyceride turnover, and mitochondrial FA oxidation and accumulation of toxic lipid intermediates, the former induced more severe diastolic dysfunction than the latter, which was accompanied with a decrease in membrane phospholipid unsaturation, induction of unfolded protein response (UPR), and a decrease in the expression of Sirt1 and stearoyl-CoA desaturase-1 (SCD1), catalyzing the conversion of SFA to MUFA. When the SFA supply in the heart overwhelms the cellular capacity to use it for energy, excess exogenous SFA channels to membrane phospholipids, leading to UPR induction, and development of diastolic dysfunction.


Assuntos
Cardiomiopatias/metabolismo , Lipídeos de Membrana/metabolismo , Membranas/metabolismo , Fosfolipídeos/metabolismo , Animais , Cardiomiopatias/patologia , Células Cultivadas , Diástole , Dieta Hiperlipídica , Regulação para Baixo , Ácidos Graxos Monoinsaturados/análise , Ácidos Graxos Monoinsaturados/metabolismo , Masculino , Lipídeos de Membrana/análise , Membranas/química , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/química , Miocárdio/metabolismo , Fosfolipídeos/análise , Triglicerídeos/análise , Triglicerídeos/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
11.
Biochem Biophys Res Commun ; 505(1): 81-86, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241938

RESUMO

Reelin is a secreted protein essential for the development and function of the mammalian brain. The receptors for Reelin, apolipoprotein E receptor 2 and very low-density lipoprotein receptor, belong to the low-density lipoprotein receptor family, but it is not known whether Reelin is involved in the brain lipid metabolism. In the present study, we performed lipidomic analysis of the cerebral cortex of wild-type and Reelin-deficient (reeler) mice, and found that reeler mice exhibited several compositional changes in phospholipids. First, the ratio of phospholipids containing one saturated fatty acid (FA) and one docosahexaenoic acid (DHA) or arachidonic acid (ARA) decreased. Secondly, the ratio of phospholipids containing one monounsaturated FA (MUFA) and one DHA or ARA increased. Thirdly, the ratio of phospholipids containing 5,8,11-eicosatrienoic acid, or Mead acid (MA), increased. Finally, the expression of stearoyl-CoA desaturase-1 (SCD-1) increased. As the increase of MA is seen as an index of polyunsaturated FA (PUFA) deficiency, and the expression of SCD-1 is suppressed by PUFA, these results strongly suggest that the loss of Reelin leads to PUFA deficiency. Hence, MUFA and MA are synthesized in response to this deficiency, in part by inducing SCD-1 expression. This is the first report of changes of FA composition in the reeler mouse brain and provides a basis for further investigating the new role of Reelin in the development and function of the brain.


Assuntos
Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/deficiência , Proteínas da Matriz Extracelular/deficiência , Lipídeos/química , Proteínas do Tecido Nervoso/deficiência , Serina Endopeptidases/deficiência , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Ácido Araquidônico/metabolismo , Encéfalo/embriologia , Moléculas de Adesão Celular Neuronais/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Proteínas da Matriz Extracelular/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Metabolismo dos Lipídeos , Camundongos Endogâmicos ICR , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/genética , Fosfolipídeos/metabolismo , Proteína Reelina , Serina Endopeptidases/genética , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
12.
Nat Med ; 23(11): 1287-1297, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29035365

RESUMO

Critical to the function of mast cells in immune responses including allergy is their production of lipid mediators, among which only omega-6 (ω-6) arachidonate-derived eicosanoids have been well characterized. Here, by employing comprehensive lipidomics, we identify omega-3 (ω-3) fatty acid epoxides as new mast cell-derived lipid mediators and show that they are produced by PAF-AH2, an oxidized-phospholipid-selective phospholipase A2. Genetic or pharmacological deletion of PAF-AH2 reduced the steady-state production of ω-3 epoxides, leading to attenuated mast cell activation and anaphylaxis following FcɛRI cross-linking. Mechanistically, the ω-3 epoxides promote IgE-mediated activation of mast cells by downregulating Srcin1, a Src-inhibitory protein that counteracts FcɛRI signaling, through a pathway involving PPARg. Thus, the PAF-AH2-ω-3 epoxide-Srcin1 axis presents new potential drug targets for allergic diseases.


Assuntos
Compostos de Epóxi/química , Ácidos Graxos Ômega-3/farmacologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Animais , Células Cultivadas , Meios de Cultivo Condicionados , Ácidos Graxos Ômega-3/química , Humanos , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fosfolipídeos/metabolismo
13.
EMBO J ; 36(12): 1719-1735, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28495679

RESUMO

The autophagosome, a double-membrane structure mediating degradation of cytoplasmic materials by macroautophagy, is formed in close proximity to the endoplasmic reticulum (ER). However, how the ER membrane is involved in autophagy initiation and to which membrane structures the autophagy-initiation complex is localized have not been fully characterized. Here, we were able to biochemically analyze autophagic intermediate membranes and show that the autophagy-initiation complex containing ULK and FIP200 first associates with the ER membrane. To further characterize the ER subdomain, we screened phospholipid biosynthetic enzymes and found that the autophagy-initiation complex localizes to phosphatidylinositol synthase (PIS)-enriched ER subdomains. Then, the initiation complex translocates to the ATG9A-positive autophagosome precursors in a PI3P-dependent manner. Depletion of phosphatidylinositol (PI) by targeting bacterial PI-specific phospholipase C to the PIS domain impairs recruitment of downstream autophagy factors and autophagosome formation. These findings suggest that the autophagy-initiation complex, the PIS-enriched ER subdomain, and ATG9A vesicles together initiate autophagosome formation.


Assuntos
Autofagossomos/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/análise , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Biogênese de Organelas , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Transporte Proteico
14.
J Biol Chem ; 287(4): 2926-34, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22147702

RESUMO

Chloroquine (CQ) is a widely prescribed anti-malarial agent and is also prescribed to treat autoimmune diseases. Clinical treatment with CQ is often accompanied by serious side effects such as hepatitis and retinopathy. As a weak base, CQ accumulates in intracellular acidic organelles, raises the pH, and induces osmotic swelling and permeabilization of acidic organelles, which account for CQ-induced cytotoxicity. We reported previously that CQ treatment caused α-tocopherol transfer protein (α-TTP), a gene product of familial vitamin E deficiency, to change its location from the cytosol to the surface of acidic organelles. Here we show that α-TTP plays a novel role in protecting against CQ toxicity both in vitro and in vivo. In the presence of CQ, rat hepatoma McARH7777 cells, which do not express α-TTP endogenously, showed more severe cytotoxicity, such as larger vacuolation of acidic organelles and caspase activation, than α-TTP transfectant cells. Similarly, α-TTP knockout mice showed more severe CQ toxicity, such as hepatotoxicity and retinopathy, than wild-type mice. These effects were not ameliorated by vitamin E supplementation. In contrast to bafilomycin A1 treatment, which prevents CQ accumulation in cells by raising the pH of acidic organelles, α-TTP expression prevented CQ accumulation without affecting the pH of acidic organelles. Taken together, our data suggest that α-TTP protects against CQ toxicity by preventing CQ accumulation in acidic organelles through a mechanism distinct from vitamin E transport.


Assuntos
Antimaláricos/efeitos adversos , Proteínas de Transporte/metabolismo , Cloroquina/efeitos adversos , Resistência a Medicamentos , Animais , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Cloroquina/farmacocinética , Cloroquina/farmacologia , Citosol , Citotoxinas/efeitos adversos , Citotoxinas/farmacocinética , Citotoxinas/farmacologia , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Knockout , Organelas/genética , Organelas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/genética , Doenças Retinianas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA