Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946570

RESUMO

Fluorescent reporter mouse lines and Cre/Flp recombinase driver lines play essential roles in investigating various molecular functions in vivo. Now that applications of the CRISPR/Cas9 genome-editing system to mouse fertilized eggs have drastically accelerated these knock-in mouse generations, the next need is to establish easier, quicker, and cheaper methods for knock-in donor preparation. Here, we reverify and optimize the phospho-PCR method to obtain highly pure long single-stranded DNAs (ssDNAs) suitable for knock-in mouse generation via genome editing. The sophisticated sequential use of two exonucleases, in which double-stranded DNAs (dsDNAs) amplified by a pair of 5'-phosphorylated primer and normal primer are digested by Lambda exonuclease to yield ssDNA and the following Exonuclease III treatment degrades the remaining dsDNAs, enables much easier long ssDNA productions without laborious gel extraction steps. By microinjecting these donor DNAs along with CRISPR/Cas9 components into mouse zygotes, we have effectively generated fluorescent reporter lines and recombinase drivers. To further broaden the applicability, we have prepared long ssDNA donors in higher concentrations and electroporated them into mouse eggs to successfully obtain knock-in embryos. This classical yet improved method, which is regaining attention on the progress of CRISPR/Cas9 development, shall be the first choice for long donor DNA preparation, and the resulting knock-in lines could accelerate life science research.


Assuntos
DNA de Cadeia Simples/normas , Técnicas de Introdução de Genes/métodos , Animais , Sistemas CRISPR-Cas , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Eletroporação/métodos , Edição de Genes/métodos , Camundongos , Camundongos Transgênicos , Microinjeções/métodos , Reação em Cadeia da Polimerase/métodos , Zigoto/metabolismo
2.
Cells ; 11(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35011572

RESUMO

Neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASD) and intellectual disability (ID), are a large group of neuropsychiatric illnesses that occur during early brain development, resulting in a broad spectrum of syndromes affecting cognition, sociability, and sensory and motor functions. Despite progress in the discovery of various genetic risk factors thanks to the development of novel genomics technologies, the precise pathological mechanisms underlying the onset of NDDs remain elusive owing to the profound genetic and phenotypic heterogeneity of these conditions. Autism susceptibility candidate 2 (AUTS2) has emerged as a crucial gene associated with a wide range of neuropsychological disorders, such as ASD, ID, schizophrenia, and epilepsy. AUTS2 has been shown to be involved in multiple neurodevelopmental processes; in cell nuclei, it acts as a key transcriptional regulator in neurodevelopment, whereas in the cytoplasm, it participates in cerebral corticogenesis, including neuronal migration and neuritogenesis, through the control of cytoskeletal rearrangements. Postnatally, AUTS2 regulates the number of excitatory synapses to maintain the balance between excitation and inhibition in neural circuits. In this review, we summarize the knowledge regarding AUTS2, including its molecular and cellular functions in neurodevelopment, its genetics, and its role in behaviors.


Assuntos
Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Animais , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Neurogênese/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
3.
iScience ; 23(12): 101820, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33305180

RESUMO

Autism susceptibility candidate 2 (AUTS2), a risk gene for autism spectrum disorders (ASDs), is implicated in telencephalon development. Because AUTS2 is also expressed in the cerebellum where defects have been linked to ASDs, we investigated AUTS2 functions in the cerebellum. AUTS2 is specifically localized in Purkinje cells (PCs) and Golgi cells during postnatal development. Auts2 conditional knockout (cKO) mice exhibited smaller and deformed cerebella containing immature-shaped PCs with reduced expression of Cacna1a. Auts2 cKO and knock-down experiments implicated AUTS2 participation in elimination and translocation of climbing fiber synapses and restriction of parallel fiber synapse numbers. Auts2 cKO mice exhibited behavioral impairments in motor learning and vocal communications. Because Cacna1a is known to regulate synapse development in PCs, it suggests that AUTS2 is required for PC maturation to elicit normal development of PC synapses and thus the impairment of AUTS2 may cause cerebellar dysfunction related to psychiatric illnesses such as ASDs.

4.
Sci Adv ; 6(36)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917586

RESUMO

For normal neurogenesis and circuit formation, delamination of differentiating neurons from the proliferative zone must be precisely controlled; however, the regulatory mechanisms underlying cell attachment are poorly understood. Here, we show that Down syndrome cell adhesion molecule (DSCAM) controls neuronal delamination by local suppression of the RapGEF2-Rap1-N-cadherin cascade at the apical endfeet in the dorsal midbrain. Dscam transcripts were expressed in differentiating neurons, and DSCAM protein accumulated at the distal part of the apical endfeet. Cre-loxP-based neuronal labeling revealed that Dscam knockdown impaired endfeet detachment from ventricles. DSCAM associated with RapGEF2 to inactivate Rap1, whose activity is required for membrane localization of N-cadherin. Correspondingly, Dscam knockdown increased N-cadherin localization and ventricular attachment area at the endfeet. Furthermore, excessive endfeet attachment by Dscam knockdown was restored by co-knockdown of RapGEF2 or N-cadherin Our findings shed light on the molecular mechanism that regulates a critical step in early neuronal development.


Assuntos
Moléculas de Adesão Celular , Neurônios , Caderinas/genética , Moléculas de Adesão Celular/metabolismo , Mesencéfalo , Neurogênese , Neurônios/fisiologia
5.
iScience ; 23(6): 101183, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32498016

RESUMO

Impairments in synapse development are thought to cause numerous psychiatric disorders. Autism susceptibility candidate 2 (AUTS2) gene has been associated with various psychiatric disorders, such as autism and intellectual disabilities. Although roles for AUTS2 in neuronal migration and neuritogenesis have been reported, its involvement in synapse regulation remains unclear. In this study, we found that excitatory synapses were specifically increased in the Auts2-deficient primary cultured neurons as well as Auts2 mutant forebrains. Electrophysiological recordings and immunostaining showed increases in excitatory synaptic inputs as well as c-fos expression in Auts2 mutant brains, suggesting that an altered balance of excitatory and inhibitory inputs enhances brain excitability. Auts2 mutant mice exhibited autistic-like behaviors including impairments in social interaction and altered vocal communication. Together, these findings suggest that AUTS2 regulates excitatory synapse number to coordinate E/I balance in the brain, whose impairment may underlie the pathology of psychiatric disorders in individuals with AUTS2 mutations.

6.
Zoolog Sci ; 34(2): 93-104, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28397605

RESUMO

Xenopus vasa-like gene 1 (XVLG1), a DEAD-Box Helicase 4 (DDX4) gene identified as a vertebrate vasa homologue, is required for the formation of primordial germ cells (PGCs). However, it remains to be clarified when and how XVLG1 functions in the formation of the germ cells. To gain a better understanding of the molecular mechanisms underlying XVLG1 during PGC development, we injected XVLG1 morpholino oligos into germ-plasm containing blastomeres of 32-cell stage of Xenopus embryos, and traced cell fates of the injected blastomere-derived PGCs. As a result of this procedure, migration of the PGCs was impaired and the number of PGCs derived from the blastomeres was significantly decreased. In addition, TUNEL staining in combination with in situ hybridization revealed that the loss of PGCs peaked at stage 27 was caused by apoptosis. This data strongly suggests an essential role for XVLG1 in migration and survival of the germ cells.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Células Germinativas/fisiologia , Xenopus/metabolismo , Animais , Movimento Celular , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas de Silenciamento de Genes , Morfolinos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA