Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncol Lett ; 27(3): 123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38348384

RESUMO

New therapeutic approaches are needed for osteosarcoma, which is the most common malignancy of the bone, especially for metastatic cases. Nintedanib is a potent, oral tyrosine kinase inhibitor approved for treating idiopathic pulmonary fibrosis, which blocks a variety of receptor signals, including fibroblast growth factor receptors, vascular endothelial growth factor receptors and platelet-derived growth factor receptors. The present study assessed the effect of nintedanib on previously developed mouse AXT osteosarcoma cells, and on AXT-derived osteosarcoma developed in C57BL/6 mice, which displays lethal tumors with osteoid formation and lung metastatic lesions that mimics human disease. In vitro analysis, including flow cytometry and immunoblotting, revealed that nintedanib inhibited AXT cell proliferation and cell cycle progression, induced apoptosis, and inactivated AKT and ERK1/2. Immunoblot analysis using tumor lysates demonstrated that nintedanib inhibited its target molecules in vivo. As a single agent, nintedanib decreased the size of primary AXT-derived osteosarcoma, and reduced circulating tumor cells and lung metastasis. Immunohistochemical findings indicated that nintedanib exerted antitumor activity mainly by inhibiting the formation of CD31-positive tumor vasculature, while αSMA-positive cells were still enriched in tumors after nintedanib treatment. In addition, nintedanib exhibited an anti-osteosarcoma effect on C57BL/6 severe combined immunodeficient mice in which T- and B-cell function is obsolete, suggesting that the antitumor effect of nintedanib was not attributable to antitumor immunity. Collectively, these findings indicated that nintedanib holds potential for treating osteosarcoma.

2.
Mol Neurobiol ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308664

RESUMO

While patients with cancer show a higher prevalence of psychiatric disorders than the general population, the mechanism underlying this interaction remains unclear. The present study examined whether tumor-bearing (TB) mice show psychological changes using the conditioned fear paradigm and the role of cytokines in these changes. TB mice were established by transplantation with mouse osteosarcoma AXT cells. These TB mice were then found to exhibit disruption in extinction of conditioned fear memory. Eighteen cytokines in serum were increased in TB mice, among which i.c.v. injection of interleukin (IL)-1ß and IL-6 strengthened fear memory in normal mice. Contents of IL-17 and keratinocyte-derived cytokine (KC) in the amygdala and KC in the hippocampus were increased in TB mice. KC mRNA in both the amygdala and hippocampus was also increased in TB mice, and i.c.v. injection of KC dose-dependently strengthened fear memory in normal mice. In addition, injection of IL-1ß, but not IL-6, increased KC mRNA in the amygdala and hippocampus. In TB mice KC mRNA was increased in both astrocytes and microglia of the amygdala and hippocampus. The microglia inhibitor minocycline, but not the astrocyte inhibitor fluorocitrate, alleviated disruption in extinction of conditioned fear memory in TB mice. Microinjection of KC into the hippocampus, but not into the amygdala, increased fear memory in normal mice. These findings indicate that TB mice show an increase in serum cytokines, including IL-1ß, that increases KC production in microglia of the hippocampus, which then disrupts extinction of fear memory.

3.
Traffic Inj Prev ; 25(1): 36-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37815801

RESUMO

OBJECTIVE: Although second-generation antihistamines have reduced sedation-related side effects compared to first-generation antihistamines, sedation may still impair motor vehicle driving performance. Moreover, receiving/making phone calls using a hands-free function can negatively affect driving performance. Therefore, herein, driving performance was evaluated using a driving simulator to gain insights into the hazards of driving by combining second-generation antihistamines and a calling task, i.e., simulated calls using a hands-free function. METHODS: In this study, 20 subjects drove in a driving simulator in the absence or presence of a calling task while taking or not taking second-generation antihistamines. Driving performances for nonemergency and emergency events were determined, and a comparative analysis of intra-individual variability when taking and not taking second-generation antihistamines was conducted. RESULTS: First, when nonemergency and emergency were examined in the absence of a calling task, no significant difference in driving performance was observed between taking and not taking second-generation antihistamines. Next, when the nonemergency event was examined in the presence of a calling task, no significant difference in driving performance was observed between taking and not taking second-generation antihistamines. However, when the emergency event was examined in the presence of a calling task, a significant difference in driving performance was observed between taking and not taking second-generation antihistamines, thus resulting in reduced driving performance. CONCLUSIONS: The new system with added calling tasks allowed the extraction of the potential risks of driving performance of second-generation antihistamines that may have been previously overlooked. This study suggests that pharmacists and other healthcare professionals may need to instruct people taking any second-generation antihistamine to focus on driving and not on subtasks that require cognitive load such as talking while driving.


Assuntos
Condução de Veículo , Antagonistas não Sedativos dos Receptores H1 da Histamina , Humanos , Antagonistas não Sedativos dos Receptores H1 da Histamina/efeitos adversos , Acidentes de Trânsito , Antagonistas dos Receptores Histamínicos/efeitos adversos
4.
Mol Brain ; 16(1): 19, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737827

RESUMO

A growing body of evidence suggests that intractable pain reduces both the quality of life and survival in cancer patients. In the present study, we evaluated whether chronic pain stimuli could directly affect cancer pathology using tumor-bearing mice. For this purpose, we used two different models of chronic pain in mice, neuropathic pain and persistent postsurgical pain, with Lewis lung carcinoma (LLC) as tumor cells. We found that tumor growth was dramatically promoted in these pain models. As well as these pain models, tumor growth of LLC, severe osteosarcoma (AXT) and B16 melanoma cells was significantly promoted by concomitant activation of sensory neurons in AAV6-hM3Dq-injected mice treated with the designer drug clozapine-N-oxide (CNO). Significant increases in mRNA levels of vascular endothelial growth factor-A (Vegfa), tachykinin precursor 1 (Tac1) and calcitonin-related polypeptide alpha (Calca) in the ipsilateral side of dorsal root ganglion of AAV6-hM3Dq-injected mice were observed by concomitant activation of sensory neurons due to CNO administration. Moreover, in a model of bone cancer pain in which mice were implanted with AXT cells into the right femoral bone marrow cavity, the survival period was significantly prolonged by repeated inhibition of sensory neurons of AAV6-hM4Di-injected mice by CNO administration. These findings suggest that persistent pain signals may promote tumor growth by the increased expression of sensory-located peptides and growth factors, and controlling cancer pain may prolong cancer survival.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Dor Crônica , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Dor do Câncer/complicações , Dor Crônica/metabolismo , Qualidade de Vida , Células Receptoras Sensoriais/metabolismo , Neoplasias Ósseas/complicações
5.
Cells ; 11(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36429043

RESUMO

Novel therapeutic targets are needed to better treat osteosarcoma, which is the most common bone malignancy. We previously developed mouse osteosarcoma cells, designated AX (accelerated bone formation) cells from bone marrow stromal cells. AX cells harbor both wild-type and mutant forms of p53 (R270C in the DNA-binding domain, which is equivalent to human R273C). In this study, we showed that mutant p53 did not suppress the transcriptional activation function of wild-type p53 in AX cells. Notably, AXT cells, which are cells derived from tumors originating from AX cells, lost wild-type p53 expression, were devoid of the intact transcription activation function, and were resistant to doxorubicin. ChIP-seq analyses revealed that this mutant form of p53 bound to chromatin in the vicinity of the transcription start sites of various genes but exhibited a different binding profile from wild-type p53. The knockout of mutant p53 in AX and AXT cells by CRISPR-Cas9 attenuated tumor growth but did not affect the invasion of these cells. In addition, depletion of mutant p53 did not prevent metastasis in vivo. Therefore, the therapeutic potency targeting R270C (equivalent to human R273C) mutant p53 is limited in osteosarcoma. However, considering the heterogeneous nature of osteosarcoma, it is important to further evaluate the biological and clinical significance of mutant p53 in various cases.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Camundongos , Animais , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Osteossarcoma/metabolismo , Processos Neoplásicos , Neoplasias Ósseas/metabolismo
6.
Mol Biol Cell ; 33(9): ar78, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35704469

RESUMO

Cellular differentiation is characterized by changes in cell morphology that are largely determined by actin dynamics. We previously showed that depolymerization of the actin cytoskeleton triggers the differentiation of preadipocytes into mature adipocytes as a result of inhibition of the transcriptional coactivator activity of megakaryoblastic leukemia 1 (MKL1). The extracellular matrix (ECM) influences cell morphology via interaction with integrins, and reorganization of the ECM is associated with cell differentiation. Here we show that interaction between actin dynamics and ECM rearrangement plays a key role in adipocyte differentiation. We found that depolymerization of the actin cytoskeleton precedes disruption and degradation of fibrillar fibronectin (FN) structures at the cell surface after the induction of adipogenesis in cultured preadipocytes. A FN matrix suppressed both reorganization of the actin cytoskeleton into the pattern characteristic of adipocytes and terminal adipocyte differentiation, and these inhibitory effects were overcome by knockdown of integrin α5 (ITGα5). Peroxisome proliferator-activated receptor γ was required for down-regulation of FN during adipocyte differentiation, and MKL1 was necessary for the expression of ITGα5. Our findings suggest that cell-autonomous down-regulation of FN-ITGα5 interaction contributes to reorganization of the actin cytoskeleton and completion of adipocyte differentiation.


Assuntos
Adipogenia , Fibronectinas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Diferenciação Celular , Fibronectinas/metabolismo , Integrina alfa5/metabolismo
7.
J Orthop Res ; 39(12): 2732-2743, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33751653

RESUMO

Osteosarcoma is the most common high-grade malignancy of bone, and novel therapeutic options are urgently required. Previously, we developed mouse osteosarcoma AXT cells that can proliferate both under adherent and nonadherent conditions. Based on metabolite levels, nonadherent conditions were more similar to the in vivo environment than adherent conditions. A drug screen identified MEK inhibitors, including trametinib, that preferentially decreased the viability of nonadherent AXT cells. Trametinib inhibited the cell cycle and induced apoptosis in AXT cells, and both effects were stronger under nonadherent conditions. Trametinib also potently decreased viability in U2OS cells, but its effects were less prominent in MG63 or Saos2 cells. By contrast, MG63 and Saos2 cells were more sensitive to PI3K inhibition than AXT or U2OS cells. Notably, the combination of MAPK/ERK kinase (MEK) and PI3K inhibition synergistically decreased viability in U2OS and AXT cells, but this effect was less pronounced in MG63 or Saos2 cells. Therefore, signal dependence for cell survival and crosstalk between MEK-ERK and PI3K-AKT pathways in osteosarcoma are cell context-dependent. The activation status of other kinases including CREB varied in a cell context-dependent manner, which might determine the response to MEK inhibition. A single dose of trametinib was sufficient to decrease the size of the primary tumor and circulating tumor cells in vivo. Moreover, combined administration of trametinib and rapamycin or conventional anticancer drugs further increased antitumor activity. Thus, given optimal biomarkers for predicting its effects, trametinib holds therapeutic potential for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Apoptose , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Fosfatidilinositol 3-Quinases
8.
Cancer Res ; 80(20): 4439-4450, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32928920

RESUMO

Death receptor Fas-mediated apoptosis not only eliminates nonspecific and autoreactive B cells but also plays a major role in antitumor immunity. However, the possible mechanisms underlying impairment of Fas-mediated induction of apoptosis during lymphomagenesis remain unknown. In this study, we employed our developed syngeneic lymphoma model to demonstrate that downregulation of Fas is required for both lymphoma development and lymphoma cell survival to evade immune cytotoxicity. CD40 signal activation significantly restored Fas expression and thereby induced apoptosis after Fas ligand treatment in both mouse and human lymphoma cells. Nevertheless, certain human lymphoma cell lines were found to be resistant to Fas-mediated apoptosis, with Livin (melanoma inhibitor of apoptosis protein; ML-IAP) identified as a driver of such resistance. High expression of Livin and low expression of Fas were associated with poor prognosis in patients with aggressive non-Hodgkin's lymphoma. Livin expression was tightly driven by bromodomain and extraterminal (BET) proteins BRD4 and BRD2, suggesting that Livin expression is epigenetically regulated in refractory lymphoma cells to protect them from Fas-mediated apoptosis. Accordingly, the combination of CD40-mediated Fas restoration with targeting of the BET proteins-Livin axis may serve as a promising immunotherapeutic strategy for refractory B-cell lymphoma. SIGNIFICANCE: These findings yield insights into identifying risk factors in refractory lymphoma and provide a promising therapy for tumors resistant to Fas-mediated antitumor immunity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4439/F1.large.jpg.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Inibidoras de Apoptose/imunologia , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Proteínas de Neoplasias/imunologia , Receptor fas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Criança , Pré-Escolar , Citotoxicidade Imunológica , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células NIH 3T3 , Proteínas de Neoplasias/genética , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Receptor fas/genética , Receptor fas/metabolismo
9.
Cancer Res ; 79(12): 3088-3099, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30992323

RESUMO

Tumors comprise heterogeneous cell types including cancer stem cells (CSC), progenitor cells, and differentiated cells. Chemoresistance is a potential cause of relapse and a key characteristic of CSC, but the development of novel therapeutic approaches for targeting these cells has been limited. We previously established osteosarcoma-initiating (OSi) cells by introducing the gene for c-Myc into bone marrow stromal cells of Ink4a/Arf knockout mice. These OSi cells are composed of two distinct clones: highly tumorigenic cells (AX cells), similar to bipotent committed osteochondral progenitor cells, and tripotent cells of low tumorigenicity (AO cells), similar to mesenchymal stem cells. Here we show that depolymerization of the actin cytoskeleton induces terminal adipocyte differentiation and suppresses tumorigenesis in chemoresistant OSi cells. In contrast to AX cells, AO cells were highly resistant to conventional chemotherapeutic agents such as doxorubicin and were thus identified as chemoresistant cells. Inhibition of Rho-associated coiled-coil containing protein kinase (ROCK) elicited terminal adipocyte differentiation in chemoresistant AO cells through negative regulation of the transcriptional coactivator megakaryoblastic leukemia 1 associated with actin depolymerization. The clinically administered ROCK inhibitor fasudil significantly suppressed growth in vitro and tumorigenicity in vivo of chemoresistant AO cells as well as of OSi cells. Our findings thus suggest a new therapeutic strategy based on the induction of trans-terminal differentiation via modulation of actin cytoskeleton dynamics for therapy-resistant osteosarcoma stem cells. SIGNIFICANCE: These findings suggest that induction of trans-terminal differentiation through regulation of actin dynamics is a potential novel therapeutic approach for targeting chemoresistant stem-like tumor cells.


Assuntos
Adipócitos/citologia , Carcinogênese/efeitos dos fármacos , Diferenciação Celular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Osteossarcoma/prevenção & controle , Quinases Associadas a rho/antagonistas & inibidores , Citoesqueleto de Actina/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/prevenção & controle , Carcinogênese/metabolismo , Carcinogênese/patologia , Proliferação de Células , Células Cultivadas , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia
10.
Mol Pain ; 14: 1744806918756406, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29357732

RESUMO

Chronic pain induced by nerve damage due to trauma or invasion of cancer to the bone elicits severe ongoing pain as well as hyperalgesia and allodynia likely reflecting adaptive changes within central circuits that amplify nociceptive signals. The present study explored the possible contribution of the mesolimbic dopaminergic circuit in promoting allodynia related to neuropathic and cancer pain. Mice with ligation of the sciatic nerve or treated with intrafemoral osteosarcoma cells showed allodynia to a thermal stimulus applied to the paw on the injured side. Patch clamp electrophysiology revealed that the intrinsic neuronal excitability of ventral tegmental area (VTA) dopamine neurons projecting to the nucleus accumbens (N.Acc.) was significantly reduced in those mice. We used tyrosine hydroxylase (TH)-cre mice that were microinjected with adeno-associated virus (AAV) to express channelrhodopsin-2 (ChR2) to allow optogenetic stimulation of VTA dopaminergic neurons in the VTA or in their N.Acc. terminals. Optogenetic activation of these cells produced a significant but transient anti-allodynic effect in nerve injured or tumor-bearing mice without increasing response thresholds to thermal stimulation in sham-operated animals. Suppressed activity of mesolimbic dopaminergic neurons is likely to contribute to decreased inhibition of N.Acc. output neurons and to neuropathic or cancer pain-induced allodynia suggesting strategies for modulation of pathological pain states.


Assuntos
Neoplasias Ósseas/complicações , Neurônios Dopaminérgicos/patologia , Hiperalgesia/etiologia , Hiperalgesia/patologia , Nervo Isquiático/lesões , Área Tegmentar Ventral/patologia , Animais , Neoplasias Ósseas/fisiopatologia , Dor do Câncer/etiologia , Dor do Câncer/patologia , Dor do Câncer/fisiopatologia , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Hiperalgesia/fisiopatologia , Ligadura , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/patologia , Núcleo Accumbens/patologia , Núcleo Accumbens/fisiopatologia , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Área Tegmentar Ventral/fisiopatologia
11.
Cancer Sci ; 108(9): 1793-1802, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28643892

RESUMO

Osteosarcoma is the most common type of primary bone tumor, and novel therapeutic approaches for this disease are urgently required. To identify effective agents, we screened a panel of Food and Drug Administration (FDA)-approved drugs in AXT cells, our newly established mouse osteosarcoma line, and identified calcitriol as a candidate compound with therapeutic efficacy for this disease. Calcitriol inhibited cell proliferation in AXT cells by blocking cell cycle progression. From a mechanistic standpoint, calcitriol induced endoplasmic reticulum (ER) stress, which was potentially responsible for downregulation of cyclin D1, activation of p38 MAPK, and intracellular production of reactive oxygen species (ROS). Knockdown of Atf4 or Ddit3 restored cell viability after calcitriol treatment, indicating that the ER stress response was indeed responsible for the anti-proliferative effect in AXT cells. Notably, the ER stress response was induced to a lesser extent in human osteosarcoma than in AXT cells, consistent with the weaker suppressive effect on cell growth in the human cells. Thus, the magnitude of ER stress induced by calcitriol might be an index of its anti-osteosarcoma effect. Although mice treated with calcitriol exhibited weight loss and elevated serum calcium levels, a single dose was sufficient to decrease osteosarcoma tumor size in vivo. Our findings suggest that calcitriol holds therapeutic potential for treatment of osteosarcoma, assuming that techniques to diminish its toxicity could be established. In addition, our results show that calcitriol could still be safely administered to osteosarcoma patients for its original purposes, including treatment of osteoporosis.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Calcitriol/administração & dosagem , Retículo Endoplasmático/metabolismo , Osteossarcoma/tratamento farmacológico , Animais , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Injeções Intraperitoneais , Camundongos Endogâmicos C57BL , Osteossarcoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Cancer Ther ; 16(1): 182-192, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27799356

RESUMO

Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of osteosarcoma cells in vitro Simvastatin also induced apoptosis in osteosarcoma cells in a manner dependent on inhibition of the mevalonate biosynthetic pathway. It also disrupted the function of the small GTPase RhoA and induced activation of AMP-activated protein kinase (AMPK) and p38 MAPK, with AMPK functioning upstream of p38 MAPK. Inhibitors of AMPK or p38 MAPK attenuated the induction of apoptosis by simvastatin, whereas metformin enhanced this effect of simvastatin by further activation of AMPK. Although treatment with simvastatin alone did not inhibit osteosarcoma tumor growth in vivo, its combination with a fat-free diet induced a significant antitumor effect that was enhanced further by metformin administration. Our findings suggest that simvastatin induces apoptosis in osteosarcoma cells via activation of AMPK and p38 MAPK, and that, in combination with other approaches, it holds therapeutic potential for osteosarcoma. Mol Cancer Ther; 16(1); 182-92. ©2016 AACR.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Osteossarcoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinvastatina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Metformina/farmacologia , Camundongos , Osteossarcoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
13.
Cancer Sci ; 106(7): 875-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25940371

RESUMO

Osteosarcoma (OS) is the most frequent primary solid malignant tumor of bone. Its prognosis remains poor in the substantial proportion of patients who do not respond to chemotherapy and novel therapeutic options are therefore needed. We previously established a mouse model that mimics the aggressive behavior of human OS. Enzyme-linked immunosorbent assay-based screening of such mouse tumor lysates identified platelet-derived growth factor-BB (PDGF-BB) as an abundant soluble factor, the gene for which was expressed dominantly in surrounding non-malignant cells of the tumor, whereas that for the cognate receptor (PDGF receptor ß) was highly expressed in OS cells. Platelet-derived growth factor-BB induced activation of both MEK-ERK and phosphatidylinositol 3-kinase-protein kinase B signaling pathways and promoted survival in OS cells deprived of serum, and these effects were blocked by the PDGF receptor inhibitor imatinib. However, these actions of PDGF-BB and imatinib were mostly masked in the presence of serum. Whereas imatinib alone did not manifest an antitumor effect in mice harboring OS tumors, combined treatment with imatinib and adriamycin exerted a synergistic antiproliferative effect on OS cells in vivo. These results suggest that treatment of OS with imatinib is effective only when cell survival is dependent on PDGF signaling or when imatinib is combined with another therapeutic intervention that renders the tumor cells susceptible to imatinib action, such as by inducing cellular stress.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Doxorrubicina/farmacologia , Piperazinas/farmacologia , Pirimidinas/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Becaplermina , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Mesilato de Imatinib , Camundongos Endogâmicos C57BL , Osteossarcoma , Proteínas Proto-Oncogênicas c-sis/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Res ; 74(22): 6531-41, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25273088

RESUMO

Osteosarcoma is a malignant bone tumor in children and adolescents characterized by intrinsic therapeutic resistance. The IGF2 is expressed at elevated levels in osteosarcoma after treatment with chemotherapy, prompting an examination of its functional contributions to resistance. We found that continuous exposure to IGF2 or insulin in the absence of serum created a dormant growth state in osteosarcoma cells that conferred resistance to various chemotherapeutic drugs in vitro. Mechanistic investigations revealed that this dormant state correlated with downregulation of downstream signaling by the IGF1 receptor, heightened cell survival, enhanced autophagy, and the presence of extracellular glutamine. Notably, inhibiting autophagy or depleting glutamine was sufficient to increase chemotherapeutic sensitivity in osteosarcoma xenografts in mice. Clinically, we confirmed that IGF expression levels were elevated in human osteosarcoma specimens from patients who received chemotherapy. Together, our results suggest that activation of IGF or insulin signaling preserves the survival of osteosarcoma cells under chemotherapeutic stress, providing a drug-resistant population that may engender minimal residual disease. Attenuating this survival mechanism may help overcome therapeutic resistance in osteosarcoma.


Assuntos
Autofagia/fisiologia , Neoplasias Ósseas/tratamento farmacológico , Fator de Crescimento Insulin-Like II/farmacologia , Osteossarcoma/tratamento farmacológico , Adolescente , Adulto , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Criança , Citoproteção , Resistencia a Medicamentos Antineoplásicos , Feminino , Glutamina/metabolismo , Humanos , Insulina/farmacologia , Fator de Crescimento Insulin-Like II/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteossarcoma/patologia
15.
Nat Commun ; 5: 3368, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24569594

RESUMO

Cellular differentiation is regulated through activation and repression of defined transcription factors. A hallmark of differentiation is a pronounced change in cell shape, which is determined by dynamics of the actin cytoskeleton. Here we show that regulation of the transcriptional coactivator MKL1 (megakaryoblastic leukemia 1) by actin cytoskeleton dynamics drives adipocyte differentiation mediated by peroxisome proliferator-activated receptor γ (PPARγ), a master transcriptional regulator of adipogenesis. Induction of adipocyte differentiation results in disruption of actin stress fibres through downregulation of RhoA-ROCK signalling. The consequent rapid increase in monomeric G-actin leads to the interaction of G-actin with MKL1, which prevents nuclear translocation of MKL1 and allows expression of PPARγ followed by adipogenic differentiation. Moreover, we found that MKL1 and PPARγ act in a mutually antagonistic manner in the adipocytic differentiation programme. Our findings thus provide new mechanistic insight into the relation between the dynamics of cell shape and transcriptional regulation during cellular differentiation.


Assuntos
Citoesqueleto de Actina/metabolismo , Adipócitos/metabolismo , Diferenciação Celular , Transativadores/metabolismo , Células 3T3-L1 , Actinas/genética , Actinas/metabolismo , Adipócitos/citologia , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Immunoblotting , Cinética , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , PPAR gama/genética , PPAR gama/metabolismo , Ligação Proteica , Transporte Proteico , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Imagem com Lapso de Tempo , Transativadores/genética , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP
16.
Oncol Rep ; 31(3): 1121-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424471

RESUMO

Glycosylation is an important post-translational modification, in which attachment of glycans to proteins has effects on biological functions and carcinogenesis. Analysis of human chorionic gonadotropin, a glycoprotein hormone produced by placental trophoblasts and trophoblastic tumors, has contributed to the diagnosis and treatment of trophoblastic disease, resulting in reduced incidence and mortality. However, alterations of the glycan structure itself in choriocarcinoma have not been characterized. We established a new choriocarcinoma cell line, induced choriocarcinoma cell-1 (iC3-1), which mimics the clinical pathohistology in vivo, to examine the tumorigenesis and pathogenesis of choriocarcinoma. In this study, the alterations of glycan structures in the development of choriocarcinoma were examined by performance of comprehensive glycan profiling in clinical samples and in iC3-1 cells using a conventional microarray and the recently introduced lectin microarray. Microarray comparison showed significant upregulation of several characteristic glycogenes in the iC3-1 cells as compared to the parental HTR8/SVneo cells. The lectin array showed increased α-2-6-sialic acid, Galß1-4GlcNAc, GlcNAcß1-3GalNAc, and decreased α-1-6 core fucose, high mannose, GalNacß1-4Gal, GALNAc (Tn antigen) and Galß1-3Gal in choriocarcinoma tissue compared to normal villi. This is the first report of a lectin array analysis in choriocarcinoma and provides useful information for understanding of the disease.


Assuntos
Coriocarcinoma/metabolismo , Glicoproteínas/metabolismo , Complicações Neoplásicas na Gravidez/metabolismo , Processamento de Proteína Pós-Traducional , Neoplasias Uterinas/metabolismo , Configuração de Carboidratos , Linhagem Celular Tumoral , Feminino , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Lectinas/química , Polissacarídeos/metabolismo , Gravidez , Análise Serial de Proteínas , Transcriptoma
17.
Leuk Res ; 37(9): 1150-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23759247

RESUMO

T-cell protein tyrosine phosphatase (TC-PTP, also known as PTPN2) is a negative regulator of the JAK/STAT pathway. STAT5 is activated by BCR-ABL kinase and STAT1 is an important transcription factor for interferon (IFN)-α-induced signaling in chronic myeloid leukemia (CML). We used siRNA to delete TC-PTP in the CML cell line, KT-1, and examined changes in the sensitivity to imatinib and IFN-α. Suppression of TC-PTP induced activation of STAT5, leading to imatinib resistance, while prolonged phosphorylation of STAT1 was induced by IFN-α, triggering cell death in KT-1 cells. These findings suggest that TC-PTP modulates sensitivity to imatinib and IFN-α in CML.


Assuntos
Benzamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Interferon-alfa/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Pirimidinas/farmacologia , Fator de Transcrição STAT1/metabolismo , Antivirais/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Células Tumorais Cultivadas
18.
Cancer Sci ; 104(7): 880-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23557174

RESUMO

The epithelial-mesenchymal transition (EMT) contributes to the malignant progression of cancer cells including acquisition of the ability to undergo metastasis. However, whereas EMT-related transcription factors (EMT-TF) are known to play an important role in the malignant progression of epithelial tumors, their role in mesenchymal tumors remains largely unknown. We show that expression of the gene for Twist2 is downregulated in human osteosarcoma and correlates inversely with tumorigenic potential in mouse osteosarcoma. Forced expression of Twist2 in highly tumorigenic murine osteosarcoma cells induced a slight inhibition of cell growth in vitro but markedly suppressed tumor formation in vivo. Conversely, knockdown of Twist2 in osteosarcoma cells with a low tumorigenic potential promoted tumor formation in vivo, suggesting that Twist2 functions as a tumor suppressor in osteosarcoma cells. Furthermore, Twist2 induced expression of fibulin-5, which has been reported as a tumor suppressor. Medium conditioned by mouse osteosarcoma cells overexpressing Twist2 inhibited expression of the MMP9 gene as well as invasion in mouse embryonic fibroblasts, and forced expression of Twist2 in osteosarcoma cells suppressed MMP9 gene expression in tumor tissue. Data from the present study suggest that Twist2 inhibits formation of a microenvironment conducive to tumor growth and thereby attenuates tumorigenesis in osteosarcoma.


Assuntos
Neoplasias Ósseas/genética , Genes Supressores de Tumor , Osteossarcoma/genética , Proteínas Repressoras/genética , Proteína 1 Relacionada a Twist/genética , Animais , Neoplasias Ósseas/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteossarcoma/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Regulação para Cima
19.
Stem Cells ; 31(4): 627-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23335250

RESUMO

Cancer stem cells (CSCs) play an important role in disease recurrence after radiation treatment as a result of intrinsic properties such as high DNA repair capability and antioxidative capacity. It is unclear, however, how CSCs further adapt to escape the toxicity of the repeated irradiation regimens used in clinical practice. Here, we have exposed a population of murine glioma stem cells (GSCs) to fractionated radiation in order to investigate the associated adaptive changes, with the ultimate goal of identifying a targetable factor that regulates acquired radioresistance. We have shown that fractionated radiation induces an increase in IGF1 secretion and a gradual upregulation of the IGF type 1 receptor (IGF1R) in GSCs. Interestingly, IGF1R upregulation exerts a dual radioprotective effect. In the resting state, continuous IGF1 stimulation ultimately induces downregulation of Akt/extracellular-signal-regulated kinases (ERK) and FoxO3a activation, which results in slower proliferation and enhanced self-renewal. In contrast, after acute radiation, the abundance of IGF1R and increased secretion of IGF1 promote a rapid shift from a latent state toward activation of Akt survival signaling, protecting GSCs from radiation toxicity. Treatment of tumors formed by the radioresistant GSCs with an IGF1R inhibitor resulted in a marked increase in radiosensitivity, suggesting that blockade of IGF1R signaling is an effective strategy to reverse radioresistance. Together, our results show that GSCs evade the damage of repeated radiation not only through innate properties but also through gradual inducement of resistance pathways and identify the dynamic regulation of GSCs by IGF1R signaling as a novel mechanism of adaptive radioprotection.


Assuntos
Glioma/patologia , Glioma/radioterapia , Células-Tronco Neoplásicas/metabolismo , Receptor IGF Tipo 1/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Glioma/metabolismo , Humanos , Immunoblotting , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células Tumorais Cultivadas
20.
PLoS One ; 7(11): e50621, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226335

RESUMO

Osteosarcoma is a high-grade malignant bone tumor that manifests ingravescent clinical behavior. The intrinsic events that confer malignant properties on osteosarcoma cells have remained unclear, however. We previously established two lines of mouse osteosarcoma cells: AX cells, which are able to form tumors in syngeneic mice, and AXT cells, which were derived from such tumors and acquired an increased tumorigenic capacity during tumor development. We have now identified Igf2 mRNA-binding protein3 (Imp3) as a key molecule responsible for this increased tumorigenicity of AXT cells in vivo. Imp3 is consistently up-regulated in tumors formed by AX cells, and its expression in these cells was found to confer malignant properties such as anchorage-independent growth, loss of contact inhibition, and escape from anoikis in vitro. The expression level of Imp3 also appeared directly related to tumorigenic ability in vivo which is the critical determination for tumor-initiating cells. The effect of Imp3 on tumorigenicity of osteosarcoma cells did not appear to be mediated through Igf2-dependent mechanism. Our results implicate Imp3 as a key regulator of stem-like tumorigenic characteristics in osteosarcoma cells and as a potential therapeutic target for this malignancy.


Assuntos
Osteossarcoma/patologia , Proteínas de Ligação a RNA/genética , Regulação para Cima , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Terapia de Alvo Molecular , Osteossarcoma/tratamento farmacológico , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA