Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 120(6): e2209569120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36724253

RESUMO

Two-pore channels (TPCs) are activated by phosphatidylinositol bisphosphate (PIP2) binding to domain I and/or by voltage sensing in domain II (DII). Little is known about how these two stimuli are integrated, and how each TPC subtype achieves its unique preference. Here, we show that distinct conformations of DII-S4 in the voltage-sensor domain determine the two gating modes. DII-S4 adopts an intermediate conformation, and forced stabilization in this conformation was found to result in a high PIP2-dependence in primarily voltage-dependent TPC3. In TPC2, which is PIP2-gated and nonvoltage-dependent, a stabilized intermediate conformation does not affect the PIP2-gated currents. These results indicate that the intermediate state represents the PIP2-gating mode, which is distinct from the voltage-gating mode in TPCs. We also found in TPC2 that the tricyclic antidepressant desipramine induces DII-S4-based voltage dependence and that naringenin, a flavonoid, biases the mode preference from PIP2-gating to desipramine-induced voltage gating. Taken together, our study on TPCs revealed an unprecedented mode-switching mechanism involving conformational changes in DII-S4, and its active role in integrating voltage and PIP2 stimuli.


Assuntos
Desipramina , Ativação do Canal Iônico , Estrutura Terciária de Proteína , Fosfatos de Fosfatidilinositol/metabolismo
3.
Cell Rep ; 40(10): 111309, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070693

RESUMO

Dysfunctional dopamine signaling is implicated in various neuropsychological disorders. Previously, we reported that dopamine increases D1 receptor (D1R)-expressing medium spiny neuron (MSN) excitability and firing rates in the nucleus accumbens (NAc) via the PKA/Rap1/ERK pathway to promote reward behavior. Here, the results show that the D1R agonist, SKF81297, inhibits KCNQ-mediated currents and increases D1R-MSN firing rates in murine NAc slices, which is abolished by ERK inhibition. In vitro ERK phosphorylates KCNQ2 at Ser414 and Ser476; in vivo, KCNQ2 is phosphorylated downstream of dopamine signaling in NAc slices. Conditional deletion of Kcnq2 in D1R-MSNs reduces the inhibitory effect of SKF81297 on KCNQ channel activity, while enhancing neuronal excitability and cocaine-induced reward behavior. These effects are restored by wild-type, but not phospho-deficient KCNQ2. Hence, D1R-ERK signaling controls MSN excitability via KCNQ2 phosphorylation to regulate reward behavior, making KCNQ2 a potential therapeutical target for psychiatric diseases with a dysfunctional reward circuit.


Assuntos
Dopamina , Canal de Potássio KCNQ2 , Transtornos Mentais , Proteínas do Tecido Nervoso , Animais , Dopamina/metabolismo , Canal de Potássio KCNQ2/metabolismo , Transtornos Mentais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fosforilação , Receptores de Dopamina D1/metabolismo , Recompensa
4.
J Gen Physiol ; 154(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35612552

RESUMO

Voltage-gated sodium (Nav) channels produce the upstroke of action potentials in excitable tissues throughout the body. The gating of these channels is determined by the asynchronous movements of four voltage-sensing domains (VSDs). Past studies on the skeletal muscle Nav1.4 channel have indicated that VSD-I, -II, and -III are sufficient for pore opening, whereas VSD-IV movement is sufficient for channel inactivation. Here, we studied the cardiac sodium channel, Nav1.5, using charge-neutralizing mutations and voltage-clamp fluorometry. Our results reveal that both VSD-III and -IV are necessary for Nav1.5 inactivation, and that steady-state inactivation can be modulated by all VSDs. We also demonstrate that channel activation is partially determined by VSD-IV movement. Kinetic modeling suggests that these observations can be explained from the cardiac channel's propensity to enter closed-state inactivation (CSI), which is significantly higher than that of other Nav channels. We show that skeletal muscle Nav1.4, cardiac Nav1.5, and neuronal Nav1.6 all have different propensities for CSI and postulate that these differences produce isoform-dependent roles for the four VSDs.


Assuntos
Ativação do Canal Iônico , Canais de Sódio , Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Isoformas de Proteínas/genética , Canais de Sódio/genética
5.
J Biol Chem ; 297(6): 101425, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34800436

RESUMO

The two-pore channels (TPCs) are voltage-gated cation channels consisting of single polypeptides with two repeats of a canonical 6-transmembrane unit. TPCs are known to be regulated by various physiological signals such as membrane voltage and phosphoinositide (PI). The fourth helix in the second repeat (second S4) plays a major role in detecting membrane voltage, whereas the first repeat contains a PI binding site. Therefore, each of these stimuli is detected by a unique repeat to regulate the gating of the TPC central pore. How these various stimuli regulate the dynamic structural rearrangement of the TPC molecule remain unknown. Here, we found that PI binding to the first repeat in TPC3 regulates the movement of the distally located second S4 helix, showing that the PI-binding signal is not confined to the pore gate but also transmitted to the voltage sensor. Using voltage clamp fluorometry, measurement of gating charges, and Cys-accessibility analysis, we observed that PI binding significantly potentiates the voltage dependence of the movement of the second S4 helix. Notably, voltage clamp fluorometry analysis revealed that the voltage-dependent movement of the second S4 helix occurred in two phases, of which the second phase corresponds to the transfer of the gating charges. This movement was observed in the voltage range where gate-opening occurs and was potentiated by PI. In conclusion, this regulation of the second S4 helix by PI indicates a tight inter-repeat coupling within TPC3, a feature which might be conserved among TPC family members to integrate various physiological signals.


Assuntos
Fosfatidilinositóis/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Transporte Proteico , Canais de Sódio Disparados por Voltagem/genética , Proteínas de Xenopus/genética , Xenopus laevis
6.
BMC Mol Cell Biol ; 22(1): 3, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413079

RESUMO

BACKGROUND: Human ether-à-go-go-related gene potassium channel 1 (hERG) is a voltage-gated potassium channel, the voltage-sensing domain (VSD) of which is targeted by a gating-modifier toxin, APETx1. APETx1 is a 42-residue peptide toxin of sea anemone Anthopleura elegantissima and inhibits hERG by stabilizing the resting state. A previous study that conducted cysteine-scanning analysis of hERG identified two residues in the S3-S4 region of the VSD that play important roles in hERG inhibition by APETx1. However, mutational analysis of APETx1 could not be conducted as only natural resources have been available until now. Therefore, it remains unclear where and how APETx1 interacts with the VSD in the resting state. RESULTS: We established a method for preparing recombinant APETx1 and determined the NMR structure of the recombinant APETx1, which is structurally equivalent to the natural product. Electrophysiological analyses using wild type and mutants of APETx1 and hERG revealed that their hydrophobic residues, F15, Y32, F33, and L34, in APETx1, and F508 and I521 in hERG, in addition to a previously reported acidic hERG residue, E518, play key roles in the inhibition of hERG by APETx1. Our hypothetical docking models of the APETx1-VSD complex satisfied the results of mutational analysis. CONCLUSIONS: The present study identified the key residues of APETx1 and hERG that are involved in hERG inhibition by APETx1. These results would help advance understanding of the inhibitory mechanism of APETx1, which could provide a structural basis for designing novel ligands targeting the VSDs of KV channels.


Assuntos
Venenos de Cnidários/toxicidade , Canal de Potássio ERG1/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Venenos de Cnidários/química , Venenos de Cnidários/genética , Análise Mutacional de DNA , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas Mutantes/metabolismo , Mutação/genética , Proteínas Recombinantes/toxicidade , Soluções , Xenopus laevis
7.
Elife ; 92020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32093827

RESUMO

Voltage-dependent Ca2+ channels (Cavs) are indispensable for coupling action potentials with Ca2+ signaling in living organisms. The structure of Cavs is similar to that of voltage-dependent Na+ channels (Navs). It is known that prokaryotic Navs can obtain Ca2+ selectivity by negative charge mutations of the selectivity filter, but native prokaryotic Cavs had not yet been identified. We report the first identification of a native prokaryotic Cav, CavMr, whose selectivity filter contains a smaller number of negatively charged residues than that of artificial prokaryotic Cavs. A relative mutant whose selectivity filter was replaced with that of CavMr exhibits high Ca2+ selectivity. Mutational analyses revealed that the glycine residue of the CavMr selectivity filter is a determinant for Ca2+ selectivity. This glycine residue is well conserved among subdomains I and III of eukaryotic Cavs. These findings provide new insight into the Ca2+ selectivity mechanism that is conserved from prokaryotes to eukaryotes.


Electrical signals in the brain and muscles allow animals ­ including humans ­ to think, make memories and move around. Cells generate these signals by enabling charged particles known as ions to pass through the physical barrier that surrounds all cells, the cell membrane, at certain times and in certain locations. The ions pass through pores made by various channel proteins, which generally have so-called "selectivity filters" that only allow particular types of ions to fit through. For example, the selectivity filters of a family of channels in mammals known as the Cavs only allow calcium ions to pass through. Another family of ion channels in mammals are similar in structure to the Cavs but their selectivity filters only allow sodium ions to pass through instead of calcium ions. Ion channels are found in all living cells including in bacteria. It is thought that the Cavs and sodium-selective channels may have both evolved from Cav-like channels in an ancient lifeform that was the common ancestor of modern bacteria and animals. Previous studies in bacteria found that modifying the selectivity filters of some sodium-selective channels known as BacNavs allowed calcium ions to pass through the mutant channels instead of sodium ions. However, no Cav channels had been identified in bacteria so far, representing a missing link in the evolutionary history of ion channels. Shimomura et al. have now found a Cav-like channel in a bacterium known as Meiothermus ruber. Like all proteins, ion channels are made from amino acids and comparing the selectivity filter of the M. ruber Cav with those of mammalian Cavs and the calcium-selective BacNav mutants from previous studies revealed one amino acid that plays a particularly important role. This amino acid is a glycine that helps select which ions may pass through the pore and is also present in the selectivity filters of many Cavs in mammals. Together these findings suggest that the Cav channel from M. ruber is similar to the mammal Cav channels and may more closely resemble the Cav-like channels thought to have existed in the common ancestor of bacteria and animals. Since other channel proteins from bacteria are useful genetic tools for studies in human and other animal cells, the Cav channel from M. ruber has the potential to be used to stimulate calcium signaling in experiments.


Assuntos
Canais de Cálcio/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Canais de Cálcio/química , Células Procarióticas/metabolismo , Transdução de Sinais
8.
Nat Neurosci ; 22(8): 1289-1305, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285612

RESUMO

The effects of autonomic innervation of tumors on tumor growth remain unclear. Here we developed a series of genetic techniques to manipulate autonomic innervation in a tumor- and fiber-type-specific manner in mice with human breast cancer xenografts and in rats with chemically induced breast tumors. Breast cancer growth and progression were accelerated following stimulation of sympathetic nerves in tumors, but were reduced following stimulation of parasympathetic nerves. Tumor-specific sympathetic denervation suppressed tumor growth and downregulated the expression of immune checkpoint molecules (programed death-1 (PD-1), programed death ligand-1 (PD-L1), and FOXP3) to a greater extent than with pharmacological α- or ß-adrenergic receptor blockers. Genetically induced simulation of parasympathetic innervation of tumors decreased PD-1 and PD-L1 expression. In humans, a retrospective analysis of breast cancer specimens from 29 patients revealed that increased sympathetic and decreased parasympathetic nerve density in tumors were associated with poor clinical outcomes and correlated with higher expression of immune checkpoint molecules. These findings suggest that autonomic innervation of tumors regulates breast cancer progression.


Assuntos
Fibras Autônomas Pré-Ganglionares/patologia , Neoplasias da Mama/patologia , Antagonistas Adrenérgicos/farmacologia , Animais , Antígeno B7-H1/genética , Denervação , Progressão da Doença , Feminino , Fatores de Transcrição Forkhead/genética , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Sistema Nervoso Parassimpático/patologia , Receptor de Morte Celular Programada 1/genética , Ratos , Estudos Retrospectivos , Estresse Psicológico/psicologia , Sistema Nervoso Simpático/patologia
9.
J Gen Physiol ; 151(8): 986-1006, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31182502

RESUMO

Two-pore channels, or two-pore Na+ channels (TPCs), contain two homologous domains, each containing a functional unit typical of voltage-dependent cation channels. Each domain is considered to be responsible for either phosphoinositide (PI) binding or voltage sensing. Among the three members of the TPC family, TPC1 and TPC2 are activated by PI(3,5)P2, while TPC3 has been thought not to be affected by any PIs. Here, we report that TPC3 is sensitive to PI(3,4)P2 and PI(3,5)P2, but not to PI(4,5)P2, and that the extremely slow increase in TPC3 currents induced by depolarization in Xenopus oocytes is due to the production of PI(3,4)P2 Similarly to TPC1, the cluster of basic amino acid residues in domain I is critical for PI sensitivity, but with a slight variation that may allow TPC3 to be sensitive to both PI(3,4)P2 and PI(3,5)P2 We also found that TPC3 has a unique PI-dependent modulation mechanism of voltage dependence, which is achieved by a specific bridging interaction between domain I and domain II. Taken together, these findings show that TPC3 is a unique member of the TPC family that senses PIs and displays a strong coupling between PI binding and voltage-dependent gating.


Assuntos
Ativação do Canal Iônico , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Potenciais da Membrana , Domínios Proteicos , Canais de Sódio Disparados por Voltagem/química , Xenopus , Proteínas de Xenopus/química
10.
Commun Biol ; 1: 123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272003

RESUMO

Animals must modify their behavior with appropriate timing to respond to environmental changes. Yet, the molecular and neural mechanisms regulating the timing of behavioral transition remain largely unknown. By performing forward genetics to reveal mechanisms that underlie the plasticity of thermotaxis behavior in C. elegans, we demonstrated that SLO potassium channels and a cyclic nucleotide-gated channel, CNG-3, determine the timing of transition of temperature preference after a shift in cultivation temperature. We further revealed that SLO and CNG-3 channels act in thermosensory neurons and decelerate alteration in the responsiveness of these neurons, which occurs prior to the preference transition after a temperature shift. Our results suggest that regulation of sensory adaptation is a major determinant of latency before animals make decisions to change their behavior.

11.
J Physiol ; 596(19): 4629-4650, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30086184

RESUMO

KEY POINTS: In the human ether-a-go-go related gene (hERG) channel, both the ether-a-go-go (EAG) domain in the N-terminal and the cyclic nucleotide (CN) binding homology (CNBH) domain in the C-terminal cytoplasmic region are known to contribute to the characteristic slow deactivation. Mutations of Phe860 in the CNBH domain, reported to fill the CN binding pocket, accelerate the deactivation and decrease the fluorescence resonance energy transfer (FRET) efficiencies between the EAG and CNBH domains. An electrostatic interaction between Arg696 and Asp727 in the C-linker domain, critical for HCN and CNG channels, is not formed in the hERG channel. Mutations of newly identified electrostatically interacting pair, Asp727 in the C-linker and Arg752 in the CNBH domains, accelerate the deactivation and decrease FRET efficiency. Voltage-dependent changes in FRET efficiency were not detected. These results suggest that the acceleration of the deactivation by mutations of C-terminal domains is a result of the lack of interaction between the EAG and CNBH domains. ABSTRACT: The human ether-a-go-go related gene (hERG) channel shows characteristic slow deactivation, and the contribution of both of the N-terminal cytoplasmic ether-a-go-go (EAG) domain and the C-terminal cytoplasmic cyclic nucleotide (CN) binding homology (CNBH) domain is well known. The interaction between these domains is known to be critical for slow deactivation. We analysed the effects of mutations in the CNBH domain and its upstream C-linker domain on slow deactivation and the interaction between the EAG and CNBH domains by electrophysiological and fluorescence resonance energy transfer (FRET) analyses using Xenopus oocyte and HEK293T cell expression systems. We first observed that mutations of Phe860 in the CNBH domain, which is reported to fill the CN binding pocket as an intrinsic ligand, accelerate deactivation and eliminate the inter-domain interaction. Next, we observed that the salt bridge between Arg696 and Asp727 in the C-linker domain, which is reported to be critical for the function of CN-regulated channels, is not formed. We newly identified an electrostatically interacting pair critical for slow deactivation: Asp727 and Arg752 in the CNBH domain. Their mutations also impaired the inter-domain interaction. Taking these results together, both mutations of the intrinsic ligand (Phe860) and a newly identified salt bridge pair (Asp727 and Arg752) in the hERG channel accelerated deactivation and also decreased the interaction between the EAG and CNBH domains. Voltage-dependent changes in FRET efficiency between the two domains were not detected. The results suggest that the CNBH domain contributes to slow deactivation of the hERG channel by a mechanism involving the EAG domain.


Assuntos
Canal de Potássio ERG1/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ativação do Canal Iônico , Mutação , Eletricidade Estática , Sequência de Aminoácidos , Animais , Sítios de Ligação , Canal de Potássio ERG1/química , Canal de Potássio ERG1/genética , Células HEK293 , Humanos , Oócitos/metabolismo , Conformação Proteica , Domínios Proteicos , Homologia de Sequência , Xenopus laevis
12.
FEBS Lett ; 592(2): 274-283, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274127

RESUMO

Voltage-gated sodium channels are crucial for electro-signalling in living systems. Analysis of the molecular mechanism requires both fine electrophysiological evaluation and high-resolution channel structures. Here, we optimized a dual expression system of NavAb, which is a well-established standard of prokaryotic voltage-gated sodium channels, for E. coli and insect cells using a single plasmid vector to analyse high-resolution protein structures and measure large ionic currents. Using this expression system, we evaluated the voltage dependence and determined the crystal structures of NavAb wild-type and two mutants, E32Q and N49K, whose voltage dependence were positively shifted and essential interactions were lost in voltage sensor domain. The structural and functional comparison elucidated the molecular mechanisms of the voltage dependence of prokaryotic voltage-gated sodium channels.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Expressão Gênica , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/genética , Animais , Clonagem Molecular , Escherichia coli/genética , Modelos Moleculares , Mutação , Plasmídeos/genética , Conformação Proteica , Células Sf9 , Canais de Sódio Disparados por Voltagem/metabolismo
13.
FEBS J ; 283(15): 2881-95, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27273848

RESUMO

Local anesthetics (LAs) inhibit mammalian voltage-gated Na(+) channels (Navs) and are thus clinically important. LAs also inhibit prokaryotic Navs (BacNavs), which have a simpler structure than mammalian Navs. To elucidate the detailed mechanisms of LA inhibition to BacNavs, we used NavBh, a BacNav from Bacillus halodurans, to analyze the interactions of several LAs and quaternary ammoniums (QAs). Based on the chemical similarity of QA with the tertiary-alkylamine (TAA) group of LAs, QAs were used to determine the residues required for the recognition of TAA by NavBh. We confirmed that two residues, Thr220 and Phe227, are important for LA binding; a methyl group of Thr220 is important for recognizing both QAs and LAs, whereas Phe227 is involved in holding blockers at the binding site. In addition, we found that NavBh holds blockers in a closed state, consistent with the large inner cavity observed in the crystal structures of BacNavs. These findings reveal the inhibition mechanism of LAs in NavBh, where the methyl group of Thr220 provides the main receptor site for the TAA group and the bulky phenyl group of Phe227 holds the blockers inside the large inner cavity. These two residues correspond to the two LA recognition residues in mammalian Navs, which suggests the relevance of the LA recognition between BacNavs and mammalian Navs.


Assuntos
Anestésicos Locais/química , Proteínas de Bactérias/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Canais de Sódio Disparados por Voltagem/química , Aminobenzoatos/química , Bacillus , Proteínas de Bactérias/genética , Sítios de Ligação , Mutação , Ligação Proteica , Compostos de Amônio Quaternário/química , Canais de Sódio Disparados por Voltagem/genética
14.
Cereb Cortex ; 26(1): 106-117, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25112282

RESUMO

Neural activity plays roles in the later stages of development of cortical excitatory neurons, including dendritic and axonal arborization, remodeling, and synaptogenesis. However, its role in earlier stages, such as migration and dendritogenesis, is less clear. Here we investigated roles of neural activity in the maturation of cortical neurons, using calcium imaging and expression of prokaryotic voltage-gated sodium channel, NaChBac. Calcium imaging experiments showed that postmigratory neurons in layer II/III exhibited more frequent spontaneous calcium transients than migrating neurons. To test whether such an increase of neural activity may promote neuronal maturation, we elevated the activity of migrating neurons by NaChBac expression. Elevation of neural activity impeded migration, and induced premature branching of the leading process before neurons arrived at layer II/III. Many NaChBac-expressing neurons in deep cortical layers were not attached to radial glial fibers, suggesting that these neurons had stopped migration. Morphological and immunohistochemical analyses suggested that branched leading processes of NaChBac-expressing neurons differentiated into dendrites. Our results suggest that developmental control of spontaneous calcium transients is critical for maturation of cortical excitatory neurons in vivo: keeping cellular excitability low is important for migration, and increasing spontaneous neural activity may stop migration and promote dendrite formation.


Assuntos
Cálcio/metabolismo , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Neocórtex/crescimento & desenvolvimento , Neuroglia/citologia , Neurônios/citologia , Animais , Dendritos/metabolismo , Camundongos , Neocórtex/metabolismo , Neurogênese/fisiologia , Neurônios/fisiologia
15.
J Mol Biol ; 425(22): 4074-88, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23831224

RESUMO

Activation and inactivation of voltage-gated sodium channels (Navs) are well studied, yet the molecular mechanisms governing channel gating in the membrane remain unknown. We present two conformations of a Nav from Caldalkalibacillus thermarum reconstituted into lipid bilayers in one crystal at 9Å resolution based on electron crystallography. Despite a voltage sensor arrangement identical with that in the activated form, we observed two distinct pore domain structures: a prominent form with a relatively open inner gate and a closed inner-gate conformation similar to the first prokaryotic Nav structure. Structural differences, together with mutational and electrophysiological analyses, indicated that widening of the inner gate was dependent on interactions among the S4-S5 linker, the N-terminal part of S5 and its adjoining part in S6, and on interhelical repulsion by a negatively charged C-terminal region subsequent to S6. Our findings suggest that these specific interactions result in two conformational structures.


Assuntos
Canais de Sódio Disparados por Voltagem/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Cricetulus , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Relação Estrutura-Atividade , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
16.
Nat Commun ; 3: 793, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22531178

RESUMO

Most tetrameric channels have cytosolic domains to regulate their functions, including channel inactivation. Here we show that the cytosolic C-terminal region of NavSulP, a prokaryotic voltage-gated sodium channel cloned from Sulfitobacter pontiacus, accelerates channel inactivation. The crystal structure of the C-terminal region of NavSulP grafted into the C-terminus of a NaK channel revealed that the NavSulP C-terminal region forms a four-helix bundle. Point mutations of the residues involved in the intersubunit interactions of the four-helix bundle destabilized the tetramer of the channel and reduced the inactivation rate. The four-helix bundle was directly connected to the inner helix of the pore domain, and a mutation increasing the rigidity of the inner helix also reduced the inactivation rate. These findings suggest that the NavSulP four-helix bundle has important roles not only in stabilizing the tetramer, but also in accelerating the inactivation rate, through promotion of the conformational change of the inner helix.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Rhodobacteraceae/metabolismo , Canais de Sódio/química , Canais de Sódio/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Mutação Puntual , Multimerização Proteica , Estrutura Terciária de Proteína , Rhodobacteraceae/química , Rhodobacteraceae/classificação , Rhodobacteraceae/genética , Canais de Sódio/genética
17.
J Biol Chem ; 286(9): 7409-17, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21177850

RESUMO

Prokaryotic voltage-gated sodium channels (Na(V)s) form homotetramers with each subunit contributing six transmembrane α-helices (S1-S6). Helices S5 and S6 form the ion-conducting pore, and helices S1-S4 function as the voltage sensor with helix S4 thought to be the essential element for voltage-dependent activation. Although the crystal structures have provided insight into voltage-gated K channels (K(V)s), revealing a characteristic domain arrangement in which the voltage sensor domain of one subunit is close to the pore domain of an adjacent subunit in the tetramer, the structural and functional information on Na(V)s remains limited. Here, we show that the domain arrangement in NaChBac, a firstly cloned prokaryotic Na(V), is similar to that in K(V)s. Cysteine substitutions of three residues in helix S4, Q107C, T110C, and R113C, effectively induced intersubunit disulfide bond formation with a cysteine introduced in helix S5, M164C, of the adjacent subunit. In addition, substituting two acidic residues with lysine, E43K and D60K, shifted the activation of the channel to more positive membrane potentials and consistently shifted the preferentially formed disulfide bond from T110C/M164C to Q107C/M164C. Because Gln-107 is located closer to the extracellular side of helix S4 than Thr-110, this finding suggests that the functional shift in the voltage dependence of activation is related to a restriction of the position of helix S4 in the lipid bilayer. The domain arrangement and vertical mobility of helix S4 in NaChBac indicate that the structure and the mechanism of voltage-dependent activation in prokaryotic Na(V)s are similar to those in canonical K(V)s.


Assuntos
Bacillus/fisiologia , Proteínas de Bactérias , Ativação do Canal Iônico/fisiologia , Canais de Sódio , Sódio/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células CHO , Cricetinae , Cricetulus , Dissulfetos/química , Técnicas Eletroquímicas , Células HEK293 , Humanos , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Mutagênese/fisiologia , Estrutura Terciária de Proteína , Canais de Sódio/química , Canais de Sódio/genética , Canais de Sódio/metabolismo
18.
Biochem Biophys Res Commun ; 399(3): 341-6, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20655880

RESUMO

Voltage-sensor domains (VSDs) in voltage-gated ion channels are thought to regulate the probability that a channel adopts an open conformation by moving vertically in the lipid bilayer. Here we characterized the movement of the VSDs of the prokaryotic voltage-gated sodium channel, NaChBac. Substitution of residue T110, which is located on the extracellular side of the fourth transmembrane helix of the VSD, by cysteine resulted in the formation of a disulfide bond between adjacent subunits in the channel. Our results suggest that T110 residues in VSDs of adjacent subunits can come into close proximity, implying that the VSDs can move laterally in the membrane and constitute a mechanism that regulates channel activity.


Assuntos
Proteínas de Bactérias/química , Canais de Sódio/química , Proteínas de Bactérias/genética , Linhagem Celular , Cisteína/química , Humanos , Mutação , Oxirredução , Multimerização Proteica , Estrutura Secundária de Proteína , Canais de Sódio/genética , Zinco/química
19.
J Biol Chem ; 285(6): 3685-3694, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19959480

RESUMO

Prokaryotic voltage-gated sodium channels (Na(V)s) are homotetramers and are thought to inactivate through a single mechanism, named C-type inactivation. Here we report the voltage dependence and inactivation rate of the NaChBac channel from Bacillus halodurans, the first identified prokaryotic Na(V), as well as of three new homologues cloned from Bacillus licheniformis (Na(V)BacL), Shewanella putrefaciens (Na(V)SheP), and Roseobacter denitrificans (Na(V)RosD). We found that, although activated by a lower membrane potential, Na(V)BacL inactivates as slowly as NaChBac. Na(V)SheP and Na(V)RosD inactivate faster than NaChBac. Mutational analysis of helix S6 showed that residues corresponding to the "glycine hinge" and "PXP motif" in voltage-gated potassium channels are not obligatory for channel gating in these prokaryotic Na(V)s, but mutations in the regions changed the inactivation rates. Mutation of the region corresponding to the glycine hinge in Na(V)BacL (A214G), Na(V)SheP (A216G), and NaChBac (G219A) accelerated inactivation in these channels, whereas mutation of glycine to alanine in the lower part of helix S6 in NaChBac (G229A), Na(V)BacL (G224A), and Na(V)RosD (G217A) reduced the inactivation rate. These results imply that activation gating in prokaryotic Na(V)s does not require gating motifs and that the residues of helix S6 affect C-type inactivation rates in these channels.


Assuntos
Bacillus/metabolismo , Proteínas de Bactérias/fisiologia , Ativação do Canal Iônico/fisiologia , Canais de Sódio/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Bacillus/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Eletrofisiologia , Humanos , Ativação do Canal Iônico/genética , Potenciais da Membrana , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Filogenia , Roseobacter/genética , Roseobacter/metabolismo , Homologia de Sequência de Aminoácidos , Shewanella putrefaciens/genética , Shewanella putrefaciens/metabolismo , Canais de Sódio/classificação , Canais de Sódio/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA