Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(7): 074001, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-31648207

RESUMO

Searching for the ground state of a kagomé Heisenberg antiferromagnet (KHA) has been one of the central issues of condensed-matter physics, because the KHA is expected to host spin-liquid phases with exotic elementary excitations. Here, we show our longitudinal ([Formula: see text]) and transverse ([Formula: see text]) thermal conductivities measurements of the two kagomé materials, volborthite and Ca kapellasite. Although magnetic orders appear at temperatures much lower than the antiferromagnetic energy scale in both materials, the nature of spin liquids can be captured above the transition temperatures. The temperature and field dependence of [Formula: see text] is analyzed by spin and phonon contributions, and large sample variations of the spin contribution are found in volborthite. Clear changes in [Formula: see text] are observed at the multiple magnetic transitions in volborthite, showing different magnetic thermal conduction in different magnetic structures. These magnetic contributions are not clearly observed in low-[Formula: see text] crystals of volborthite, and are almost absent in Ca kapellasite, showing the high sensitivity of the magnetic excitation in [Formula: see text] to the defects in crystals. On the other hand, a clear thermal Hall signal has been observed in the lowest-[Formula: see text] crystal of volborthite and in Ca kapellasite. Remarkably, both the temperature dependence and the magnitude of [Formula: see text] of volborthite are found to be very similar to those of Ca kapellasite, despite of about an order of magnitude difference in [Formula: see text] We find that [Formula: see text] of both compounds is well reproduced, both qualitatively and quantitatively, by spin excitations described by the Schwinger-boson mean-field theory applied to KHA with the Dzyaloshinskii-Moriya interaction. This excellent agreement demonstrates not only that the thermal Hall effect in these kagomé antiferromagnets is caused by spins in the spin liquid phase, but also that the elementary excitations of this spin liquid phase are well described by the bosonic spin excitations.

2.
Phys Rev Lett ; 121(9): 097203, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230896

RESUMO

A clear thermal Hall signal (κ_{xy}) was observed in the spin-liquid phase of the S=1/2 kagome antiferromagnet Ca kapellasite [CaCu_{3}(OH)_{6}Cl_{2}·0.6H_{2}O]. We found that κ_{xy} is well reproduced, both qualitatively and quantitatively, using the Schwinger-boson mean-field theory with the Dzyaloshinskii-Moriya interaction of D/J∼0.1. In particular, κ_{xy} values of Ca kapellasite and those of another kagome antiferromagnet, volborthite, converge to one single curve in simulations modeled using Schwinger bosons, indicating a common temperature dependence of κ_{xy} for the spins of a kagome antiferromagnet.

3.
Phys Rev Lett ; 120(17): 177201, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29756834

RESUMO

We perform de Haas-van Alphen (dHvA) measurements of the heavy-fermion superconductor CeCoIn_{5} down to 2 mK above the upper critical field. We find that the dHvA amplitudes show an anomalous suppression, concomitantly with a shift of the dHvA frequency, below the transition temperature T_{n}=20 mK. We suggest that the change is owing to magnetic breakdown caused by a field-induced antiferromagnetic (AFM) state emerging below T_{n}, revealing the origin of the field-induced quantum critical point (QCP) in CeCoIn_{5}. The field dependence of T_{n} is found to be very weak for 7-10 T, implying that an enhancement of AFM order by suppressing the critical spin fluctuations near the AFM QCP competes with the field suppression effect on the AFM phase. We suggest that the appearance of a field-induced AFM phase is a generic feature of unconventional superconductors, which emerge near an AFM QCP, including CeCoIn_{5}, CeRhIn_{5}, and high-T_{c} cuprates.

4.
Proc Natl Acad Sci U S A ; 113(31): 8653-7, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27439874

RESUMO

When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity [Formula: see text] which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2[Formula: see text]2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that [Formula: see text] is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that [Formula: see text] is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons.

5.
Rep Prog Phys ; 79(7): 074503, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27275757

RESUMO

The realization of new classes of ground states in strongly correlated electron systems continues to be a major issue in condensed matter physics. Heavy fermion materials, whose electronic structure is essentially three-dimensional, are one of the most suitable systems for obtaining novel electronic states because of their intriguing properties associated with many-body effects. Recently, a state-of-the-art molecular beam epitaxy technique was developed to reduce the dimensionality of heavy electron systems by fabricating artificial superlattices that include heavy fermion compounds; this approach can produce a new type of electronic state in two-dimensional (2D) heavy fermion systems. In artificial superlattices of the antiferromagnetic heavy fermion compound CeIn3 and the conventional metal LaIn3, the magnetic order is suppressed by a reduction in the thickness of the CeIn3 layers. In addition, the 2D confinement of heavy fermions leads to enhancement of the effective electron mass and deviation from the standard Fermi liquid electronic properties, which are both associated with the dimensional tuning of quantum criticality. In the superconducting superlattices of the heavy fermion superconductor CeCoIn5 and nonmagnetic metal YbCoIn5, signatures of superconductivity are observed even at the thickness of one unit-cell layer of CeCoIn5. The most remarkable feature of this 2D heavy fermion superconductor is that the thickness reduction of the CeCoIn5 layers changes the temperature and angular dependencies of the upper critical field significantly. This result is attributed to a substantial suppression of the Pauli pair-breaking effect through the local inversion symmetry breaking at the interfaces of CeCoIn5 block layers. The importance of the inversion symmetry breaking in this system has also been supported by site-selective nuclear magnetic resonance spectroscopy, which can resolve spectroscopic information from each layer separately, even within the same CeCoIn5 block layer. In addition, recent experiments involving CeCoIn5/YbCoIn5 superlattices have shown that the degree of the inversion symmetry breaking and, in turn, the Rashba splitting are controllable, offering the prospect of achieving even more fascinating superconducting states. Thus, these Kondo superlattices pave the way for the exploration of unconventional metallic and superconducting states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA